數(shù)學(xué)分析中的問(wèn)題、方法與實(shí)踐
定 價(jià):38 元
- 作者:主編陳汝棟
- 出版時(shí)間:2012/9/1
- ISBN:9787118083088
- 出 版 社:國(guó)防工業(yè)出版社
- 中圖法分類:O17
- 頁(yè)碼:298頁(yè)
- 紙張:膠版紙
- 版次:1
- 開(kāi)本:16開(kāi)
《數(shù)學(xué)分析中的問(wèn)題、方法與實(shí)踐》分問(wèn)題篇、方法篇和實(shí)踐篇3部分。問(wèn)題篇包含了數(shù)學(xué)分析中概念理解、方法使用中的254個(gè)問(wèn)題的錯(cuò)誤解析,有些問(wèn)題還是比較深刻的;方法篇包含了數(shù)學(xué)分析中的常用方法和技巧,分證明方法和計(jì)算方法分別予以提煉和總結(jié),并配以精選的例子;實(shí)踐篇包含數(shù)學(xué)分析中的部分理論、方法在實(shí)際問(wèn)題中的應(yīng)用和近年來(lái)部分研究生招生的數(shù)學(xué)分析試題,特別是最后針對(duì)近年來(lái)各種教材習(xí)題解答的泛濫,按照高等教育出版社出版的復(fù)旦大學(xué)《數(shù)學(xué)分析》第三版的順序,重新選擇并改編了習(xí)題,以克服同學(xué)們抄習(xí)題解答的不良習(xí)慣。我們也期望任何人不要為本習(xí)題集出版解答書(shū)籍,以便為同學(xué)們學(xué)好數(shù)學(xué)分析提供一個(gè)良好的環(huán)境。
《數(shù)學(xué)分析中的問(wèn)題、方法與實(shí)踐》可作為高等學(xué)校理科數(shù)學(xué)系學(xué)生學(xué)習(xí)數(shù)學(xué)分析的參考書(shū)和教師備課的良師益友。
第一部分 問(wèn)題篇
一、分析引論
(一) 函數(shù)
(二) 極限
(三 )連續(xù)函數(shù)與實(shí)數(shù)連續(xù)性
二、一元函數(shù)微分學(xué)
(一) 導(dǎo)數(shù)與微分
(二) 中值定理及應(yīng)用
三、一元函數(shù)積分學(xué)
(一) 原函數(shù)、不定積分及其計(jì)算
(二) 定積分的定義與可積準(zhǔn)則
(三) 定積分的性質(zhì)
(四) 微積分學(xué)基本定理和定積分的計(jì)算與應(yīng)用
四、級(jí)數(shù)(包括廣義積分)
(一) 數(shù)項(xiàng)級(jí)數(shù)及其收斂性
(二) 函數(shù)項(xiàng)級(jí)數(shù)
(三) 無(wú)窮積分
五、多元函數(shù)微分學(xué)
(一) 多元函數(shù)的極限與連續(xù)
(二) 多元函數(shù)微分學(xué)
(三) 隱函數(shù)定理及應(yīng)用
六、多元函數(shù)積分學(xué)
(一) 重積分
(二) 線積分與面積分
(三) 含參量積分
第二部分 方法篇
一、證明方法
(一) 一元微積分
1.證明數(shù)列極限
2.證明函數(shù)極限
3.函數(shù)連續(xù)性及其性質(zhì)的應(yīng)用
4.微分中值定理型命題的證明
5.函數(shù)可積性證明方法
(二) 級(jí)數(shù)理論
1.?dāng)?shù)項(xiàng)級(jí)數(shù)收斂性的判別
2.函數(shù)項(xiàng)級(jí)數(shù)
3.冪級(jí)數(shù)
4.級(jí)數(shù)的和函數(shù)性質(zhì)
5.fourier級(jí)數(shù)
二、計(jì)算方法
1.一元函數(shù)極限的計(jì)算
2.一元函數(shù)導(dǎo)數(shù)的計(jì)算
3.用微分中值定理估計(jì)
4.一元函數(shù)的不定積分、定積分的計(jì)算
5.和函數(shù)的計(jì)算
6.多元函數(shù)極限的計(jì)算
7.多元函數(shù)微分法
8.三重積分的計(jì)算
9.曲線積分與曲面積分
第三部分 實(shí)踐篇
一、相關(guān)結(jié)論的應(yīng)用
(一) 介值定理的應(yīng)用
(二) 導(dǎo)數(shù)在經(jīng)濟(jì)分析上的應(yīng)用
1.邊際與邊際分析
2.彈性與彈性分析
3.經(jīng)濟(jì)學(xué)中的最優(yōu)值問(wèn)題
(三) 導(dǎo)數(shù)的其他應(yīng)用例子
二、天津工業(yè)大學(xué)碩士研究生《數(shù)學(xué)分析》入學(xué)考試部分試題
三、習(xí)題
四、部分答案
參考文獻(xiàn)