本書是系統(tǒng)闡述組合數(shù)學(xué)基礎(chǔ)、理論、方法和實(shí)例的優(yōu)秀教材,出版30多年來多次改版,被MIT、哥倫比亞大學(xué)、UIUC、威斯康星大學(xué)等眾多國(guó)外高校采用,對(duì)國(guó)內(nèi)外組合數(shù)學(xué)教學(xué)產(chǎn)生了較大影響,也是相關(guān)學(xué)科的主要參考文獻(xiàn)之一。
本書側(cè)重于組合數(shù)學(xué)的概念和思想。包括鴿巢原理、計(jì)數(shù)技術(shù)、排列組合、P61ya計(jì)數(shù)法、二項(xiàng)式系數(shù)、容斥原理、生成函數(shù)和遞推關(guān)系以及組合結(jié)構(gòu)(匹配、實(shí)驗(yàn)設(shè)計(jì)、圖)等。深入淺出地表達(dá)了作者對(duì)該領(lǐng)域全面和深刻的理解。除包含第4版中的內(nèi)容外,本版又進(jìn)行了更新,增加了有限概率、匹配數(shù)等內(nèi)容。此外,各章均包含大量練習(xí)題,并在書末給出了參考答案與提示。
Richard A.Brualdi美國(guó)威斯康星大學(xué)麥迪遜分校數(shù)學(xué)系教授(現(xiàn)已退休),曾任該系主任多年。他的研究方向包括組合數(shù)學(xué)、圖論、線性代數(shù)和矩陣?yán)碚摚幋a理論等。Brualdi教授的學(xué)術(shù)活動(dòng)非常豐富,擔(dān)任過多種學(xué)術(shù)期刊的主編。2000年由于“在組合數(shù)學(xué)研究中所做出的杰出終身成就
Preface
1 What 'Is Combinatorics?
1.1 Example: Perfect Covers of Chessboards
1.2 Example: Magic Squares
1.3 Example: The Four-Color Problem
1.4 Example: The Problem of the 36 OfFicers
1.5 ,Example: Shortest-Route Problem
1.6 Example: Mutually Overlapping Circles
1.7 Example: The Game of Nim
1.8 Exercises
2 Permutations and Combinations
2.1 Four Basic Counting Principles
2.2 Permutations of Sets
2.3 Combinations (Subsets) of Sets
2.4 Permutations of Multisets Preface
1 What 'Is Combinatorics?
1.1 Example: Perfect Covers of Chessboards
1.2 Example: Magic Squares
1.3 Example: The Four-Color Problem
1.4 Example: The Problem of the 36 OfFicers
1.5 ,Example: Shortest-Route Problem
1.6 Example: Mutually Overlapping Circles
1.7 Example: The Game of Nim
1.8 Exercises
2 Permutations and Combinations
2.1 Four Basic Counting Principles
2.2 Permutations of Sets
2.3 Combinations (Subsets) of Sets
2.4 Permutations of Multisets
2.5 Combinations of Multisets
2.6 Finite Probability
2.7 Exercises
3 The Pigeonhole Principle
3.1 Pigeonhole Principle: Simple Form
3.2 Pigeonhole Principle: Strong Form
3.3 A Theorem of Ramsey
3.4 Exercises
4 Generating Permutations and Combinations
4.1 Generating Permutations
4.2 Inversions in Permutations
4.3 Generating Combinations
4.4 Generating r-Subsets
4.5 Partial Orders and Equivalence Relations
4.6 Exercises
5 The Binomial Coefficients
5.1 Pascal's Triangle
5.2 The Binomial Theorem
5.3 Unimodality of Binomial Coefficients
5.4 The Multinomial Theorem
5.5 Newton's Binomial Theorem
5.6 More on Partially Ordered Sets
5.7 Exercises
6 The Inclusion-Exclusion Principle and Applications
6.1 The Inclusion-Exclusion Principle
6.2 Combinations with Repetition
6.3 Derangements
6.4 Permutations with Forbidden Positions
6.5 Another Forbidden Position Problem
6.6 M6bius Inversion
6.7 Exercises
7 Recurrence Relations and Generating Functions
7.1 Some Number Sequences
7.2 Generating Functions
7.3 Exponential Generating Functions
7.4 Solving Linear Homogeneous Recurrence Relations ..
7.5 Nonhomogeneous Recurrence Relations
7.6 A Geometry Example
7.7 Exercises
8 Special Counting Sequences
8.1 Catalan Numbers
8.2 Difference Sequences and Stirling Numbers
8.3 Partition Numbers
8.4 A Geometric Problem
8.5 Lattice Paths and Schr6der Numbers
8.6 Exercises
9 Systems of Distinct Representatives
10 Combinatorial Designs
11 Introduction to Graph Theory
12 More ONgraph Theory
13 Digraphs and Networks
14 Polya Counting
Answers and Hints to Exercises
Bibliography
Index