本書提供給讀者一個對復(fù)分析的深刻理解以及這門學(xué)科是如何融入數(shù)學(xué)的。 該書是從伊利諾伊大學(xué)香檳分校的校園榮譽(yù)計(jì)劃中的講座發(fā)展起來的。這些課程的目標(biāo)是讓學(xué)生體會到當(dāng)以復(fù)分析的觀點(diǎn)對待許多數(shù)學(xué)和物理問題時,問題便被神奇地簡化了。此書從初等的水平出發(fā),但也包含了高級的材料。
近年來,我國的科學(xué)技術(shù)取得了長足進(jìn)步,特別是在數(shù)學(xué)等自然科學(xué)基礎(chǔ)領(lǐng)域不斷涌現(xiàn)出一流的研究成果。與此同時,國內(nèi)的科研隊(duì)伍與國外的交流合作也越來越密切,越來越多的科研工作者可以熟練地閱讀英文文獻(xiàn),并在國際頂級期刊發(fā)表英文學(xué)術(shù)文章,在國外出版社出版英文學(xué)術(shù)著作。
然而,在國內(nèi)閱讀海外原版英文圖書仍不是非常便捷。一方面,這些原版圖書主要集中在科技、教育比較發(fā)達(dá)的大中城市的大型綜合圖書館以及科研院所的資料室中,普通讀者借閱不甚容易;另一方面,原版書價格昂貴,動輒上百美元,購買也很不方便。這極大地限制了科技工作者對于國外先進(jìn)科學(xué)技術(shù)知識的獲取,間接阻礙了我國科技的發(fā)展。
高等教育出版社本著植根教育、弘揚(yáng)學(xué)術(shù)的宗旨服務(wù)我國廣大科技和教育工作者,同美國數(shù)學(xué)會(American Mathematical Society)合作,在征求海內(nèi)外眾多專家學(xué)者意見的基礎(chǔ)上,精選該學(xué)會近年出版的數(shù)十種專業(yè)著作,組織出版了“美國數(shù)學(xué)會經(jīng)典影印系列”叢書。美國數(shù)學(xué)會創(chuàng)建于1888年,是國際上極具影響力的專業(yè)學(xué)術(shù)組織,目前擁有近30000會員和580余個機(jī)構(gòu)成員,出版圖書3500多種,馮.諾依曼、萊夫謝茨、陶哲軒等世界級數(shù)學(xué)大家都是其作者。本影印系列涵蓋了代數(shù)、幾何、分析、方程、拓?fù)、概率、動力系統(tǒng)等所有主要數(shù)學(xué)分支以及新近發(fā)展的數(shù)學(xué)主題。我們希望這套書的出版,能夠?qū)鴥?nèi)的科研工作者、教育工作者以及青年學(xué)生起到重要的學(xué)術(shù)引領(lǐng)作用,也希望今后能有更多的海外優(yōu)秀英文著作被介紹到中國。
Preface
Chapter 1.From the Real Numbers to the Complex Numbers
1.Introduction
2.Number systems
3.Inequalities and ordered fields
4.The complex numbers
5.Alternative definitions of C
6.A glimpse at metric spaces
Chapter 2.Complex Numbers
1.Complex conjugation
2.Existence of square roots
3.Limits
4.Convergent infinite series
5.Uniform convergence and consequences
6.The unit circle and trigonometry
7.The geometry of addition and multiplication
8.Logarithms
Chapter 3.Complex Numbers and Geometry
1.Lines, circles, and balls
2.Analytic geometry
3.Quadratic polynomials
4.Linear fractional transformations
5.The Riemann sphere
Chapter 4.Power Series Expansions
1.Geometric series
2.The radius of convergence
3.Generating functions
4.Fibonacci numbers
5.An application of power series
6.Rationality
Chapter 5.Complex Differentiation
1.Definitions of complex analytic function
2.Complex differentiation
3.The Cauchy-Riemann equations
4.Orthogonal trajectories and harmonic functions
5.A glimpse at harmonic functions
6.What is a differential form?
Chapter 6.Complex Integration
1.Complex-valued functions
2.Line integrals
3.Goursat's proof
4.The Cauchy integral formula
5.A return to the definition of complex analytic function
Chapter 7.Applications of Complex Integration
1.Singularities and residues
2.Evaluating real integrals using complex variables methods
3.Fourier transforms
4.The Gamma function
Chapter 8.Additional Topics
1.The minimum-maximum theorem
2.The fundamental theorem of algebra
3.Winding numbers, zeroes, and poles
4.Pythagorean triples
5.Elementary mappings
6.Quaternions
7.Higher-dimensional complex analysis
Fhrther reading
Bibliography
Index