《基礎(chǔ)數(shù)論中一些問(wèn)題的研究》主要探討基礎(chǔ)數(shù)論中的一些問(wèn)題,介紹了素?cái)?shù)的判別方法、孿生素?cái)?shù)的一個(gè)公式、Giuga猜想、偽素?cái)?shù)的幾個(gè)公式、同余與整除中的一些問(wèn)題、數(shù)論函數(shù)的一些問(wèn)題、Riemann假設(shè)與Robin不等式、奇完全數(shù)與孤立數(shù)的一些性質(zhì)、無(wú)理不定方程等。《基礎(chǔ)數(shù)論中一些問(wèn)題的研究》可供大學(xué)本科及以上學(xué)歷學(xué)生與數(shù)學(xué)
《代數(shù)學(xué)2近世代數(shù))》緊接《代數(shù)學(xué)I:代數(shù)學(xué)基礎(chǔ)》,是中國(guó)科學(xué)技術(shù)大學(xué)代數(shù)系列教材三部曲的第二部。我們重點(diǎn)參考已經(jīng)使用近30年的中國(guó)科學(xué)技術(shù)大學(xué)*名教材《近世代數(shù)引論》,并參考Artin,Lang,Hungerford,Duminit-Foot。等*名英文教材,講述群、環(huán)、域的基本理論和伽羅瓦理論。全書(shū)分為六章,在“近
《K理論導(dǎo)論》用簡(jiǎn)短精悍的300多頁(yè),詳述了拓?fù)銴理論,雖然起點(diǎn)較高,但內(nèi)容敘述詳盡,學(xué)習(xí)之后會(huì)有很大的幫助,是該領(lǐng)域受歡迎的教程。書(shū)中每章都不遺余力的給出這些材料的歷史注解,并在每章末附有練習(xí)題。索引、符號(hào)列表、章節(jié)關(guān)系流程圖、逐章材料大綱,這些都使得本書(shū)更加易于閱讀和圖書(shū)館收藏。
本書(shū)根據(jù)教育部最新制定的高等學(xué)校《線性代數(shù)課程教學(xué)基本要求》,并參考?xì)v年研究生入學(xué)考試《數(shù)學(xué)(一)考試大綱》編寫而成。本書(shū)公分六章,內(nèi)容為行列式、矩陣、向量及其線性相關(guān)性、特征值與特征向量、二次型、Matlab應(yīng)用。書(shū)末附有部分習(xí)題的答案或提示。本書(shū)可作為高等院校非數(shù)學(xué)類各專業(yè)線性代數(shù)課程的選用教材或教學(xué)參考書(shū)。
《線性代數(shù)(第4版)》是根據(jù)高等教育本科線性代數(shù)課程的教學(xué)基本要求編寫而成的!毒性代數(shù)(第4版)》分6章,前3章為基礎(chǔ)篇,介紹行列式、矩陣、向量組的線性相關(guān)性與線性方程組,后3章為應(yīng)用提高篇,介紹矩陣相似對(duì)角化、二次型及線性空間與線性變換的基礎(chǔ)知識(shí)!毒性代數(shù)(第4版)》是為普通高等院校非數(shù)學(xué)專業(yè)本科生編寫的,內(nèi)容選
本書(shū)除系統(tǒng)介紹群、環(huán)和域的基礎(chǔ)知識(shí)(包括域的有限伽羅瓦擴(kuò)張理論)之外,還力圖強(qiáng)調(diào)近世代數(shù)中的思想和方法。書(shū)中有大量習(xí)題。除主線內(nèi)容之外,還增加一些附錄用來(lái)開(kāi)拓和深化所學(xué)內(nèi)容。
《二次型算術(shù)》主要包括兩部分:第一部分代數(shù)數(shù)論的基礎(chǔ)知識(shí)和半單代數(shù)理論,其中涉及兩方面論:二次型分類和二次丟番圖方程。第二部分包含以高斯三次方的和為特別例子的研究。目次:二次互反律;代數(shù)數(shù)域算術(shù);各種基本定理;域代數(shù);域二次型;二次型代數(shù);二次丟潘圖方程;附錄;索引。讀者對(duì)象:代數(shù)專業(yè)的研究生和數(shù)學(xué)工作者。
這本書(shū)的第一部分為學(xué)習(xí)幺半群、作用、變形、一致和非交換類別的學(xué)生提供了一個(gè)相對(duì)獨(dú)立和寬泛的角度。同時(shí)這本書(shū)也給出了半群理論,自動(dòng)機(jī),標(biāo)準(zhǔn)語(yǔ)言和其他半群的應(yīng)用的背景。幺半群圈積,作用和范疇在第二部分有詳細(xì)的介紹。該書(shū)的第二部分主要集中在幺半群的同調(diào)分類結(jié)果,其中包括Morita類型理論在等值性和二象性和幺半群的同調(diào)特性。
本書(shū)編寫時(shí)立足高職特色,以應(yīng)用為目的,同時(shí)本著“聯(lián)系實(shí)際、深化概念、注重應(yīng)用”的教學(xué)原則,突出強(qiáng)調(diào)數(shù)學(xué)概念與實(shí)際問(wèn)題的聯(lián)系。全書(shū)主要內(nèi)容包括:行列式、矩陣、線性方程組、相似矩陣、數(shù)學(xué)軟件Mathematic的應(yīng)用,每章后有練習(xí)與思考,最后后附有參考答案供學(xué)生參考。
南京大學(xué)徐潔磐教授編寫的《離散數(shù)學(xué)導(dǎo)論》是一本在國(guó)內(nèi)有一定影響的離散數(shù)學(xué)教材。此版教材繼續(xù)保持了前一版本簡(jiǎn)明、易懂的原則,在章節(jié)編排上做了調(diào)整。本書(shū)由五部分內(nèi)容組成,分別是集合論、代數(shù)系統(tǒng)、圖論、數(shù)理邏輯、離散建模,并以離散建模為其特色。其中,本書(shū)新增的“離散建!眱(nèi)容,將離散數(shù)學(xué)與計(jì)算機(jī)緊密結(jié)合起來(lái),既強(qiáng)調(diào)了數(shù)學(xué)的嚴(yán)