擬群理論的基礎(chǔ)與應(yīng)用(英文)
定 價(jià):88 元
叢書名:國(guó)外優(yōu)秀數(shù)學(xué)著作原版系列
- 作者:[摩爾]維克多.謝爾巴科夫著
- 出版時(shí)間:2023/1/1
- ISBN:9787576706222
- 出 版 社:哈爾濱工業(yè)大學(xué)出版社
- 中圖法分類:O152.7
- 頁(yè)碼:581
- 紙張:
- 版次:1
- 開本:16開
本書可以分為三個(gè)部分:基礎(chǔ)、理論和應(yīng)用。
第1~4章對(duì)擬群理論和擬群的主要類別進(jìn)行了充分的基本介紹,第5~9章介紹了過去20年來(lái)主要在“純”擬群理論分支中得到的一些結(jié)果,第10章和第11章收集了有關(guān)擬群在編碼理論和密碼學(xué)中的應(yīng)用信息。
維克多·謝爾巴科夫,摩爾多瓦人,摩爾多瓦科學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)研究所首席研究員。他的研究重點(diǎn)是代數(shù)(擬群、n元擬群、廣群)、編碼理論和密碼學(xué)問題的代數(shù)方法。他是140多篇出版物的作者,并且是許多數(shù)學(xué)期刊的定期審稿人,還是多個(gè)期刊的編委會(huì)成員,包括《廣義李理論及其應(yīng)用雜志》(Journalof Generalized Lie Theory and Applications)、《擬群與相關(guān)系統(tǒng)》(Quasigroup and Related Systems)等。
Foreword
List of Figures
List of Tables
Ⅰ Foundations
1 Elements of quasigroup theory
1.1 Introduction
1.1.1 The role of definitions
1.1.2 Sets
1.1.3 Products and partitions
1.1.4 Maps
1.2 Objects
1.2.1 Groupoids and quasigroups
1.2.2 Parastrophy: Quasigroup as an algebra
1.2.2.1 Parastrophy
1.2.2.2 Middle translations
1.2.2.3 Some groupoids
1.2.2.4 Substitutions in groupoid identities
1.2.2.5 Equational definitions
1.2.3 Some other definitions of e-quasigroups
1.2.4 Quasigroup-based cryptosystem
1.2.5 Identity elements
1.2.5.1 Local identity elements
1.2.5.2 Left and right identity elements
1.2.5.3 Loops
1.2.5.4 Identity elements of quasigroup parastrophes
1.2.5.5 The equivalence of loop definitions
1.2.5.6 Identity elements in some quasigroups
1.2.5.7 Inverse elements in loops
1.2.6 Multiplication groups of quasigroups
1.2.7 Transversals: \"Come back way\"
1.2.8 Generators of inner multiplication groups
1.3 Morphisms
1.3.1 Isotopism
1.3.2 Group action
1.3.3 Isotopism: Another point of view
1.3.4 Autotopisms of binary quasigroups
1.3.5 Automorphisms of quasig.roups
1.3.6 Pseudo-automorphisms and G-loops
1.3.7 Parastrophisms as operators
1.3.8 Isostrophism
1.3.9 Autostrophisms
1.3.9.1 Coincidence of quasigroup paiastrolches
1.3.10 Inverse loops to a fixed loci)
1.3.11 Anti-autotopy
1.3.12 Translations of isotopic quasigroups
1.4 Sub-objects
1.4.1 Subquasigroups: Nuclei and center
1.4.1.1 Sub-objects
1.4.1.2 Nuclei
1.4.1.3 Center
1.4.2 Bol and Moufang nuclei
1.4.3 The coincidence of loop nuclei
1.4.3.1 Nuclei coincidence and identities
1.4.4 Quasigroup nuclei snd center
1.4.4.1 Historical notes
1.4.4.2 Quasigroup nuclei
1.4.4.3 Quasigroup center
1.4.5 Regular permutations
1.4.6 A-nuclei of quasigroups
1.4.7 A-pseudo-automorphisms by isostrophy
1.4.8 Commutators and associatcrs
1.5 Congruences
1.5.1 Congruences of qussigrcups
1.5.1.1 Congruences in universal algebra
1.5.1.2 Normal congruences
1.5.2 Quasigroup homomorphisms
1.5.3 Normal subquasigroups
1.5.4 Normal subloolcs
1.5.5 Antihomomorphisms and endomorphisms
1.5.6 Homotopism
1.5.7 Congruences and isotopism
1.5.8 Congruence permutability
1.6 Constructions
1.6.1 Direct product
1.6.2 Semidirect product
1.6.3 Crossed (quasi-direct) product
1.6.4 n-Ary cressed product
1.6.5 Generalized crosssed product
1.6.6 Generalized singular direet product
1.6.7 Sabinin's product
1.7 Quasigroups and combinatorics
1.7.1 Orthogonality
1.7.1.1 Orthogonality of binary operations
1.7.1.2 Orthogonality of n-ary operations
1.7.1.3 Easy way to construct n-ary orthogonal operations
1.7.2 Partial Latin squares: Latin trades
1.7.3 Critical sets cf Latin squares, Sudoku
1.7.4 Transversals in Latin squares
……
Ⅱ Theory
Ⅲ Applications
A Appendix
A.1 The system of German banknotes
A.2 Outline of the history of quasigroup theory
A.3 On 20 Belousov problems
References
Index
編輯手記