定 價(jià):48 元
叢書(shū)名:國(guó)外優(yōu)秀數(shù)學(xué)著作原版系列
- 作者:[挪威] 比約恩·伊恩·鄧達(dá)斯 著
- 出版時(shí)間:2020/10/1
- ISBN:9787560390949
- 出 版 社:哈爾濱工業(yè)大學(xué)出版社
- 中圖法分類:O189.3
- 頁(yè)碼:264
- 紙張:膠版紙
- 版次:1
- 開(kāi)本:16開(kāi)
微分拓?fù)涫敲總(gè)人都應(yīng)該了解的理論。
《微分拓?fù)涠唐谡n程(英文)》主要介紹了微分拓?fù)鋵W(xué)的相關(guān)理論,通過(guò)對(duì)機(jī)器人手臂的介紹引入課程。
《微分拓?fù)涠唐谡n程(英文)》共八章,包括微分拓?fù)浜?jiǎn)介、光滑映射、切線空間、常規(guī)值、向量叢、向量叢的結(jié)構(gòu)、可積性和走向全球的局部現(xiàn)象。
《微分拓?fù)涠唐谡n程(英文)》首先討論了流形、切線空間、余切空間,其次討論了叢的相關(guān)知識(shí),最后自然地以切線和余切叢的討論而告終。
《微分拓?fù)涠唐谡n程(英文)》是一本適合具有一定數(shù)學(xué)水平的學(xué)生使用的教科書(shū),內(nèi)容由淺入深,適合高等院校師生、研究生及數(shù)學(xué)愛(ài)好者參考閱讀。
In his inaugural lecture in 18541, Riemann introduced the concept of an \"n-fach ausgedehnte Grosse\"-roughly something that has \"n degrees of freedom\" and which we now would call an n-dimensional manifold.
Examples of manifolds are all around us and arise in many applications, but formulating the ideas in a satisfying way proved to be a challenge inspiring the creation of beautiful mathematics. As a matter of fact, much of the mathematical language of the twentieth century was created with manifolds in mind.
Modern texts often leave readers with the feeling that they are getting the answer before they know there is a problem. Taking the historical approach to this didactic problem has several disadvantages. The pioneers were brilliant mathematicians, but still they struggled for decades getting the concepts right. We must accept that we are standing on the shoulders of giants.
Preface
1 Introduction
1.1 A Robot's Arm
1.2 The Configuration Space of Two Electrons
1.3 State Spaces and Fiber Bundles
1.4 Further Examples
1.5 Compact Surfaces
1.6 Higher Dimensions
2 Smooth Manifolds
2.1 Topological Manifolds
2.2 Smooth Structures
2.3 Maximal Atlases
2.4 Smooth Maps
2.5 Submanifolds
2.6 Products and Sums
3 The Tangent Space
3.1 Germs
3.2 Smooth Bump Functions
3.3 The Tangent Space
3.4 The Cotangent Space
3.5 Derivations
4 Regular Values
4.1 The Rank
4.2 The Inverse Function Theorem
4.3 The Rank Theorem
4.4 Regular Values
4.5 Transversality
4.6 Sard's Theorem
4.7 Immersions and Imbeddings
5 Vector Bundles
5.1 Topological Vector Bundles
5.2 Transition Functions
5.3 Smooth Vector Bundles
5.4 Pre-vector Bundles
5.5 The Tangent Bundle
5.6 The Cotangent Bundle
……
6 Constructions on Vector Bundles
7 Integrability
8 Local Phenomena that Go Global
Appendix A Point Set Topology
References
Index