本書是一部學(xué)習(xí)凸多面體和多面體集合理論,代數(shù)幾何和這些領(lǐng)域之間的關(guān)系以及著名的環(huán)面變量理論的入門書籍。第一部分包括多面體理論,介紹大量線性優(yōu)化,計算科學(xué)領(lǐng)域幾何方面的數(shù)學(xué)背景;第二部分用最基本的方式引進環(huán)面變量。目次:(第一部分)組合凸面:凸體;多面體和多面集合的組合理論;多面球;Minkowski和與混合體;格子多面體和扇形;(第二部分)代數(shù)幾何:環(huán)面變量;層和射影環(huán)面變量;環(huán)面變量的上同調(diào)。附錄。
讀者對象:數(shù)學(xué)專業(yè)的研究生,老師和相關(guān)科研人員。
Preface
Introduction
Part 1
Combinatorial Convexity
Ⅰ.Convex Bodies
1.Convex sets
2.Theorems of Radon and Carath6odory
3.Nearest point map and supporting hyperplanes
4.Faces and normal cones
5.Support function and distance function
6.Polar bodies
Ⅱ.Combinatorial theory of polytopes and polyhedral sets
1.The boundary plex of a polyhedral set
2.Polar polytopes and quotient polytopes
3.Special types of polytopes
4.Linear transforms and Gale transforms
5.Matrix representation of transforms
6.Classification of polytopes
Ⅲ Polyhedral spheres
1.Cell plexes
2.Stellar operations
3.The Euler and the Dehn—Sommerville equations
4.Schlegel diagrams,n—diagrams,and polytopality of spheres
5.Embedding problems
6.Shellings
7.Upper bound theorem
Ⅳ.Minkowski sum and mixed volume
1.Minkowsld sum
2.Hausdorff metric
3.Volume and mixed volume
4.Further properties of mixed volumes
5.Alexandrov—Fenchel's inequality
6.Ehrhart's theorem
7.Zonotopes and arrangements of hyperplanes
Ⅴ.Lattice polytopes and fans
1.Lattice cones
2.Dual cones and quotient cones
3.Monoids
4.Fans
5.The binatorial Picard group
6.Regular stellar operations
7.Classification problems
8.Fano polytopes
Part 2
Algebraic Geometry
Ⅵ.Toric varieties
1.Ideals and affine algebraic sets
2.Affine toric varieties
3.Toric varieties
4.Invariant toric subvarieties
5.The torus action
6.Toric morphisms and fibrations
7.Blowups and blowdowns
8.Resolution of singularities
9.Completeness and pactness
Ⅶ.Sheaves and projective toric varieties
1.Sheaves and divisors
2.Invertible sheaves and the Picard group
3.Projective toric varieties
4.Support functions and line bundles
5.Chow ring
6.Intersection numbers.Hodge inequality
7.Moment map and Morse function
8.Classification theorems.Toric Fano varieties
Ⅷ.Cohomology of toric varieties
1.Basic concepts
2.Cohomology ring of a toric variety
3.Cech cohomology
4.Cohomology of invertible sheaves
5.The Riemann—Roch—Hh—zebruch theorem
Summary: A Dictionary
Appendix
Comments,historical notes,further exercises,research
problems,suggestions for further reading
References
List of Symbols
Index