Theoretical Femtosecond Physics理論飛秒物理——強(qiáng)激光場(chǎng)中的原子和分子(影印版)
定 價(jià):39 元
叢書名:中外物理學(xué)精品書系·引進(jìn)系列
- 作者:Theoretical Femtosecond Physics理論飛秒物理——強(qiáng)激光場(chǎng)中的原子和分子(影印版)
- 出版時(shí)間:2013/8/21 16:06:00
- ISBN:9787301226872
- 出 版 社:北京大學(xué)出版社
- 中圖法分類:O43
- 頁(yè)碼:字 數(shù):
- 紙張:膠版紙
- 版次:頁(yè) 數(shù):
- 開(kāi)本:16K
利用含時(shí)薛定諤方程的近似或數(shù)值解,本書非微擾地分析了光與物質(zhì)的相互作用。在本書中,光場(chǎng)被看作是經(jīng)典的。本書還討論了從原子的電離到分子的電離和離解范圍內(nèi)的各種物理現(xiàn)象,以及化學(xué)反應(yīng)的控制等等。而使用短脈沖強(qiáng)激光的實(shí)驗(yàn)的理論背景也在本書中給出。在附錄中還包含了一些計(jì)算細(xì)節(jié)。本書適合光學(xué)、凝聚態(tài)物理、原子物理等領(lǐng)域的研究者閱讀,也可用于這些方向的研究生做參考。
《理論飛秒物理——強(qiáng)激光場(chǎng)中的原子和分子(影印版)》由格羅斯曼著,本書是中外物理學(xué)精品書系之一,這套書系內(nèi)容豐富,涵蓋面廣,可讀性強(qiáng),其中既有對(duì)我國(guó)傳統(tǒng)物理學(xué)發(fā)展的梳理和總結(jié),也有對(duì)正在蓬勃發(fā)展的物理學(xué)前沿的全面展示;既引進(jìn)和介紹了世界物理學(xué)研究的發(fā)展動(dòng)態(tài),也面向國(guó)際主流領(lǐng)域傳播中國(guó)物理的優(yōu)秀專著?梢哉f(shuō),“中外物理學(xué)精品書系”力圖完整呈現(xiàn)近現(xiàn)代世界和中國(guó)物理科學(xué)發(fā)展的全貌,是一部目前國(guó)內(nèi)為數(shù)不多的兼具學(xué)術(shù)價(jià)值和閱讀樂(lè)趣的經(jīng)典物理叢書。
Part I Prerequisites
1 A Short Introduction to Laser Physics
1.1 The Einstein Coefficients
1.2 Fundamentals of the Laser
1.2.1 Elementary Laser Theory
1.2.2 Realization of the Laser Principle
1.3 Pulsed Lasers
1.3.1 Frequency Comb
1.3.2 Carrier Envelope Phase
1.3.3 Husimi Representation of Laser Pulses
1.A Some Gaussian Integrals
References
2 Time-Dependent Quantum Theory
2.1 The Time-Dependent Schrodinger Equation
2.1.1 Introduction
2.1.2 Time-Evolution Operator
2.1.3 Spectral Information
2.1.4 Analytical Solutions for Wavepackets
2.2 Analytical Approaches
2.2.1 Feynman's Path Integral
2.2.2 Semiclassical Approximation
2.2.3 Time-Dependent Perturbation Theory
2.2.4 Magnus Expansion
2.2.5 Time-Dependent Hartree Method
2.2.6 Quantum-Classical Methods
2.2.7 Floquet Theory
2.3 Numerical Methods
2.3.1 Orthogonal Basis Expansion
2.3.2 Split-Operator FFT Method
2.3.3 Alternative Methods of Time-Evolution
2.3.4 Semiclassical Initial Value Representations
2.A The Royal Road to the Path Integral
2.B Variational Calculus
2.C Stability Matrix
2.D From the HK- to the VVG-Propagator
References
Part II Applications
3 Field Matter Coupling and Two-Level Systems
3.1 Light Matter Interaction
3.1.1 Minimal Coupling
3.1.2 Length Gauge
3.1.3 Kramers-Henneberger Transformation
3.1.4 Volkov Wavepacket
3.2 Analytically Solvable Two-Level Problems
3.2.1 Dipole Matrix Element
3.2.2 Rabi Oscillations Induced by a Constant Perturbation
3.2.3 Time-Dependent Perturbations
3.2.4 Exactly Solvable Time-Dependent Cases
3.A Generalized Parity Transformation
3.B Two-Level System in an Incoherent Field
References
4 Single Electron Atoms in Strong Laser Fields
4.1 The Hydrogen Atom
4.1.1 Hydrogen in Three Dimensions
4.1.2 The One-Dimensional Coulomb Problem
4.2 Field Induced Ionization
4.2.1 Tunnel Ionization
4.2.2 Multiphoton Ionization
4.2.3 ATI in the Coulomb Potential
4.2.4 Stabilization in Very Strong Fields
4.2.5 Atoms Driven by HCP
4.3 High Harmonic Generation
4.3.1 Three-Step Model
4.3.2 Odd Harmonics Rule
4.3.3 Semiclassical Explanation of the Plateau
4.3.4 Cutoff and Odd Harmonics Revisited
4.A More on Atomic Units
……
References
References
Index
<p>Part I Prerequisites<br /> 1 A Short Introduction to Laser Physics <br /> 1.1 The Einstein Coefficients<br /> 1.2 Fundamentals of the Laser<br /> 1.2.1 Elementary Laser Theory<br /> 1.2.2 Realization of the Laser Principle<br /> 1.3 Pulsed Lasers <br /> 1.3.1 Frequency Comb <br /> 1.3.2 Carrier Envelope Phase <br /> 1.3.3 Husimi Representation of Laser Pulses <br /> 1.A Some Gaussian Integrals<br /> References <br /> 2 Time-Dependent Quantum Theory <br /> 2.1 The Time-Dependent Schrodinger Equation<br /> 2.1.1 Introduction<br /> 2.1.2 Time-Evolution Operator <br /> 2.1.3 Spectral Information<br /> 2.1.4 Analytical Solutions for Wavepackets<br /> 2.2 Analytical Approaches<br /> 2.2.1 Feynman's Path Integral<br /> 2.2.2 Semiclassical Approximation<br /> 2.2.3 Time-Dependent Perturbation Theory <br /> 2.2.4 Magnus Expansion<br /> 2.2.5 Time-Dependent Hartree Method<br /> 2.2.6 Quantum-Classical Methods <br /> 2.2.7 Floquet Theory<br /> 2.3 Numerical Methods<br /> 2.3.1 Orthogonal Basis Expansion<br /> 2.3.2 Split-Operator FFT Method <br /> 2.3.3 Alternative Methods of Time-Evolution <br /> 2.3.4 Semiclassical Initial Value Representations <br /> 2.A The Royal Road to the Path Integral <br /> 2.B Variational Calculus <br /> 2.C Stability Matrix <br /> 2.D From the HK- to the VVG-Propagator <br /> References <br /> <br /> Part II Applications<br /> 3 Field Matter Coupling and Two-Level Systems<br /> 3.1 Light Matter Interaction<br /> 3.1.1 Minimal Coupling<br /> 3.1.2 Length Gauge<br /> 3.1.3 Kramers-Henneberger Transformation <br /> 3.1.4 Volkov Wavepacket<br /> 3.2 Analytically Solvable Two-Level Problems <br /> 3.2.1 Dipole Matrix Element <br /> 3.2.2 Rabi Oscillations Induced by a Constant Perturbation<br /> 3.2.3 Time-Dependent Perturbations <br /> 3.2.4 Exactly Solvable Time-Dependent Cases <br /> 3.A Generalized Parity Transformation<br /> 3.B Two-Level System in an Incoherent Field<br /> References <br /> 4 Single Electron Atoms in Strong Laser Fields <br /> 4.1 The Hydrogen Atom<br /> 4.1.1 Hydrogen in Three Dimensions <br /> 4.1.2 The One-Dimensional Coulomb Problem <br /> 4.2 Field Induced Ionization<br /> 4.2.1 Tunnel Ionization <br /> 4.2.2 Multiphoton Ionization<br /> 4.2.3 ATI in the Coulomb Potential<br /> 4.2.4 Stabilization in Very Strong Fields<br /> 4.2.5 Atoms Driven by HCP<br /> 4.3 High Harmonic Generation <br /> 4.3.1 Three-Step Model <br /> 4.3.2 Odd Harmonics Rule<br /> 4.3.3 Semiclassical Explanation of the Plateau <br /> 4.3.4 Cutoff and Odd Harmonics Revisited <br /> 4.A More on Atomic Units <br /> ……<br /> References<br /> References <br /> Index</p>