關(guān)于我們
書單推薦
新書推薦
|
神經(jīng)生物學(xué)實驗原理與技術(shù) 讀者對象:高等醫(yī)學(xué)院校相關(guān)專業(yè)師生,從事神經(jīng)生物學(xué)的研究人員
神經(jīng)生物學(xué)是生命科學(xué)的前沿,是應(yīng)用神經(jīng)解剖學(xué)、神經(jīng)生理學(xué)、神經(jīng)化學(xué)和分子生物學(xué)等多學(xué)科現(xiàn)代技術(shù),對神經(jīng)系統(tǒng)進行多層次綜合研究的實驗性科學(xué)!渡窠(jīng)生物學(xué)實驗原理與技術(shù)》(呂國蔚和李云慶編寫)作為《生命科學(xué)實驗指南系列》的重要分冊,遵循理性思維與實際操作相結(jié)合的原則,全面而系統(tǒng)地介紹了神經(jīng)生物學(xué)實驗研究的方法學(xué)(第1篇),并將編著者20余年的有關(guān)科研成果轉(zhuǎn)化為可操作的實驗指導(dǎo)(第2篇),以及提供可供參考的有關(guān)實驗研究信息(第3篇)。
《神經(jīng)生物學(xué)實驗原理與技術(shù)》適合高等醫(yī)學(xué)院校研究生、七年制和五年制醫(yī)學(xué)生及從事神經(jīng)生物學(xué)的研究人員使用,對于普通高等院校生物系研究生與本科生及生物學(xué)工作者亦有很好的參考價值。 更多科學(xué)出版社服務(wù),請掃碼獲取。
目錄
序 前言 1 神經(jīng)生物學(xué)實驗方法學(xué) 1 1.1 科學(xué)思維方法學(xué) 1 1.1.1 科學(xué)技術(shù)的歷史動力 1 1.1.2 辯證地去求索 3 1.1.3 辯證地去思考 7 1.1.4 辯證地去驗證 17 1.1.5 辯證地去訓(xùn)練 24 1.2 實驗設(shè)計方法學(xué) 29 1.2.1 選題 30 1.2.2 專業(yè)設(shè)計 44 1.2.3 對照設(shè)計 54 1.2.4 統(tǒng)計設(shè)計 63 1.3 實驗分析方法學(xué) 79 1.3.1 數(shù)據(jù)整理 79 1.3.2 統(tǒng)計分析 88 1.3.3 專業(yè)分析 100 1.3.4 論文書寫 109 1.4 電刺激方法學(xué) 117 1.4.1 電刺激的基本原理 117 1.4.2 電刺激的物理特性 119 1.4.3 神經(jīng)制備的生物特性 123 1.4.4 選擇性刺激 127 1.4.5 刺激電流擴散 132 1.5 電記錄方法學(xué) 136 1.5.1 容積導(dǎo)體內(nèi)記錄 136 1.5.2 誘發(fā)電位記錄 143 1.5.3 單單位記錄 150 1.5.4 計算機輔助的記錄 158 1.5.5 細胞內(nèi)記錄 161 1.5.6 膜片鉗記錄 174 1.5.7 神經(jīng)纖維速度譜測定 178 1.5.8 軸突分叉點位置測定 182 1.5.9 壓腳痛闊測定法 187 1.6 神經(jīng)化學(xué)方法學(xué) 190 1.6.1 組織細胞破碎法 190 1.6.2 突觸體制備 193 1.6.3 電泳法 198 1.6.4 色譜法 203 1.6.5 高效液相色譜法 213 1.6.6 微透析技術(shù) 222 1.7 化學(xué)神經(jīng)解剖學(xué)方法學(xué) 229 1.7.1 免疫細胞化學(xué)技術(shù) 229 1.7.2 原位雜交組織化學(xué)技術(shù) 239 1.7.3 受體定位技術(shù) 248 1.7.4 免疫電子顯微鏡技術(shù) 250 1.8 神經(jīng)形態(tài)學(xué)方法學(xué) 253 1.8.1 辣根過氧化物酶示蹤技術(shù) 253 1.8.2 熒光素示蹤技術(shù) 260 1.8.3 放射性核素示蹤技術(shù) 262 1.8.4 順行示蹤技術(shù) 269 1.8.5 激光掃描共焦顯微鏡技術(shù) 271 1.8.6 定量及分析細胞學(xué)技術(shù) 278 1.9 分子神經(jīng)生物學(xué)方法學(xué) 282 1.9.1 核酸分子雜交技術(shù) 282 1.9.2 蛋白質(zhì)印跡法 290 1.9.3 DNA重組技術(shù) 296 1.9.4 聚合酶鏈反應(yīng)技術(shù) 306 1.9.5 DNA序列測定技術(shù) 313 1.9.6 mRNA差異顯示技術(shù) 323 1.9.7 基因芯片技術(shù) 329 1.9.8 轉(zhuǎn)基因動物技術(shù) 334 1.10 神經(jīng)行為學(xué)實驗方法學(xué) 338 1.10.1 行為學(xué)實驗的神經(jīng)基礎(chǔ)及常用動物 339 1.10.2 常用的高級腦功能研究方法 340 1.10.3 常用痛行為研究方法 348 1.11.腦成像 352 1.11.1 計算機輔助體層攝影 352 1.11.2 磁共振成像 356 1.11.3 放射性核素斷層成像 362 1.11.4 超聲成像 365 2 神經(jīng)生物學(xué)實驗與示敬 368 2.1 神經(jīng)生理學(xué)實驗 368 2.1.1 家兔外周神經(jīng)干復(fù)合動作電位記錄 368 2.1.2 家兔后肢傳人神經(jīng)纖維速度譜 370 2.1.3 擴張肛門對貓慨神經(jīng)后根放電的影響 372 2.1.4 大鼠脊髓節(jié)段性及下行性誘發(fā)電位記錄 374 2.1.5 脊髓節(jié)段性缺血時脊髓誘發(fā)電位的變化 375 2.1.6 家兔大腦皮質(zhì)體感誘發(fā)電位記錄 377 2.1.7 腦缺血對家兔大腦皮質(zhì)誘發(fā)電位的變化 379 2.1.8 瞻蛤離體脊神經(jīng)節(jié)神經(jīng)元靜息膜電位與動作電位記錄 381 2.1.9 大鼠培養(yǎng)腦細胞膜的電學(xué)特性 384 2.1.10 大鼠在體脊神經(jīng)節(jié)神經(jīng)元動作電位的細胞內(nèi)記錄 386 2.1.11 貓脊髓背索突觸后神經(jīng)元的細胞內(nèi)與細胞外記錄 388 2.1.12 貓脊頸束-背索突觸后神經(jīng)元的順、逆向反應(yīng) 390 2.1.13 大鼠脊髓背角神經(jīng)元電活動的細胞內(nèi)記錄 392 2.1.14 大鼠脊孤柬-背索突觸后神經(jīng)元對軀體與內(nèi)臟傳人的反應(yīng) 394 2.1.15 家兔中縫大核對外周傳人刺激的反應(yīng) 397 2.1.16 家兔丘腦腹后外側(cè)核電活動的細胞外記錄 398 2.1.17 軀體內(nèi)臟傳人在脊髓背角的相互作用 400 2.1.18 缺氧預(yù)適應(yīng)鼠腦提取液對ATP敏感性餌電流的作用 401 2.2 神經(jīng)化學(xué)實驗 408 2.2.1 缺氧耐受小鼠腦勻漿提取液的抗缺氧作用 408 2.2.2 急性重復(fù)缺氧小鼠腦單胺類含量的變化 411 2.2.3 不同強度軀體刺激對家兔腦脊液中CaH、MgH含量的影響 414 2.2.4 不同強度軀體刺激對家兔腦脊液中單膠類含量的影響 417 2.2.5 兔腦內(nèi)腺昔的微透析法測定 420 2.2.6 缺氧對小鼠大腦應(yīng)質(zhì)突觸體LDH透出率的影響 421 2.2.7 低氧預(yù)適應(yīng)小鼠腦勻漿提取液對PC12細胞的保護效應(yīng) 423 2.3 神經(jīng)組織免疫細胞化學(xué)實驗 425 2.3.1 延髓背角和中縫太核內(nèi)的P物質(zhì)樣陽性結(jié)構(gòu)免疫細胞化學(xué)或免疫熒光細胞化學(xué)染色法 425 2.3.2 大鼠三叉神經(jīng)節(jié)內(nèi)阿片μ受體與降鈣素基因相關(guān)膚共存的陽性神經(jīng)元免疫熒光細胞化學(xué)雙重標記染色法 428 2.3.3 大鼠延髓背角淺層內(nèi)P物質(zhì)樣陽性終未與啻鈣結(jié)合蛋白神經(jīng)元的聯(lián)系免疫熒光細胞化學(xué)雙標染色及激光掃描共焦顯微鏡觀察 430 2.3.4 面口部注射甲醒榕液后大鼠延髓背角內(nèi)的FOS樣陽性神經(jīng)元觀察一一免疫細胞化學(xué)染色法 432 2.3.5 大鼠中縫核簇內(nèi)5 起色膠樣陽性神經(jīng)元表達FOS蛋白一一免疫細胞化學(xué)雙標染包法 435 2.3.6 大鼠延髓背角內(nèi)向丘腦投射的FOS 樣陽性神經(jīng)元逆行標記與免疫細胞化學(xué)雙標染色法 437 2.3.7 大鼠三叉神經(jīng)節(jié)內(nèi)鈣結(jié)合素mRNA 陽性神經(jīng)元的分布放射性核素標記的原位雜交組織化學(xué)法 440 2.3.8 大鼠中腦導(dǎo)水管周圍灰質(zhì)內(nèi)的5-羥色膠樣陽性亞微結(jié)構(gòu)免疫電鏡法 444 2.3.9 大鼠孤束核內(nèi)GABA 能纖維終末與F物質(zhì)受體樣陽性神經(jīng)元的突觸聯(lián)系包埋前與包埋后免疫電鏡雙標記法 446 2.3.10 大鼠延髓背角內(nèi)GABA 能神經(jīng)元與F物質(zhì)能纖維終末的突觸聯(lián)系包埋前免疫電鏡雙標記法 449 2.4 神經(jīng)形態(tài)學(xué)實驗 452 2.4.1 大鼠脊髓灰質(zhì)向孤束核的投射 452 2.4.2 貓脊髓背角神經(jīng)元向外側(cè)頸核和背索核的分支投射 454 2.4.3 大鼠脊孤束背索突觸后神經(jīng)元的超(亞)微結(jié)構(gòu) 455 2.4.4 大鼠脊孤束背索突觸后神經(jīng)元對軀體感覺核與內(nèi)臟感覺核的分支投射 457 2.4.5 大鼠脊髓立體定位磁控過半夾斷模型 459 2.4.6 大鼠臂旁核向杏仁中央核的投射HRP逆行追蹤方法 461 2.4.7 大鼠中腦導(dǎo)水管周圍灰質(zhì)向伏核的5-羥色膠能投射H即逆行迫蹤與免疫細胞化學(xué)染色相結(jié)舍的雙標記法 464 2.4.8 大鼠延髓背角內(nèi)P物質(zhì)受體樣陽性神經(jīng)元向丘腦膠狀質(zhì)核技射熒光素逆行追蹤與免疫熒光染色相結(jié)合的雙標記方法 466 2.4.9 大鼠中縫大核向脊髓背角和延髓背角的分支投射熒光素雙標記法 469 2.4.10 中腦導(dǎo)水管周圍灰質(zhì)和中縫背核內(nèi)5-羥色膠能神經(jīng)元的下行分支投射熒光素雙標記與免疫熒光染色相結(jié)合的三標記法 472 2.4.11 大鼠三叉神經(jīng)脊柬核吻側(cè)亞核向三叉神經(jīng)運動核的投射一一植物凝集素(PHA-L)順行示蹤法 474 2.4.12 大鼠延髓背角淺層向臂旁外側(cè)核及丘腦腹后內(nèi)側(cè)核的投射一-BDA 順行示蹤法 477 2.4.13 大鼠中腦導(dǎo)水管周圍灰質(zhì)中縫大核三叉神經(jīng)感覺核簇的間接投射PHA-L順行示蹤與HRP逆行追蹤相結(jié)合的雙標記法的光鏡觀察 480 2.4.14 大鼠中腦導(dǎo)水管周圍灰質(zhì)-中縫大核-三衛(wèi)神經(jīng)脊束核尾側(cè)亞核的間接投射PHA-L順行示蹤與HRP逆行追蹤相結(jié)合的雙標記法的電鏡觀察 483 2.4.15 大鼠延髓背角向丘腦技射神經(jīng)元與5-羥色膠陽性終末的突觸聯(lián)系HRP逆行追蹤與免疫細胞化學(xué)染色雙標記法 486 2.4.16 大鼠孤束核-臂旁核-中央杏仁核的同接投射通路——潰變與HRP 逆行追蹤相結(jié)合的雙標記法 489 2.5 分子神經(jīng)生物學(xué)實驗 492 2.5.1 用差異顯示法分離特異表達的基因片段 492 2.5.2 慢性缺氧培養(yǎng)細胞中缺氧誘導(dǎo)因子-1的提取與檢測 497 2.5.3 大鼠三叉神經(jīng)節(jié)總RNA的提取及cDNA的制備 500 2.5.4 5-HT,受體亞型mRNA在大鼠三叉神經(jīng)節(jié)的表達 502 2.5.5 乙酷膽堿轉(zhuǎn)移酶在大鼠紋狀體的表達及其DNA 片段的回收 505 2.5.6 乙酷膽堿轉(zhuǎn)移酶DNA片段的亞克隆 507 2.5.7 ChAT-pGEM重組質(zhì)粒DNA的制備及限制性酶酶切分析 510 2.5.8 ChAT-pGEM重組質(zhì)粒DNA序列的測定 513 2.5.9 乙酷膽堿轉(zhuǎn)移酶表達蛋白的SDS 聚丙烯酷膠凝膠電泳分析 516 2.5.10 乙酷膽堿轉(zhuǎn)移酶在大鼠紋狀體分布的Western印跡檢測 520 2.5.11.性激素對周圍傷害性刺激誘導(dǎo)脊髓PPDmRNA表達上調(diào)的影響 523 2.5.12 坐骨神經(jīng)部分切斷后初級感覺神經(jīng)元(背根節(jié))的差異表達基因克隆 526 2.6 神經(jīng)行為學(xué)實驗 530 2.6.1.一足致炎大鼠雙足痛感受性的變化 530 2.6.2 甲醛溶液致炎大鼠疼痛行為的觀察 532 2.6.3 神經(jīng)反射在一足致炎大鼠非致炎足痛闊變化中的作用 533 2.6.4 體液因素在一足致炎大鼠非致炎足痛闌變化中的作用 536 2.6.5 急性缺氧預(yù)適應(yīng)對小鼠缺氧耐受性的影響 537 2.6.6 麻醉與興奮小鼠缺氧耐受性的變化 539 2.6.7 大鼠脊髓橫斷及半橫斷模型的復(fù)制 541 2.6.8 慢性束縛應(yīng)激對大鼠空間學(xué)習(xí)記憶能力的影響 543 2.6.9 創(chuàng)傷后應(yīng)激障礙模型大鼠的自發(fā)活動和焦慮水平檢測 548 3 神經(jīng)生物學(xué)資料 552 3.1.神經(jīng)生物學(xué)常見概念 552 3.1.1.生物電學(xué)常見概念 552 3.1.2.生物化學(xué)常見詞匯 558 3.1.3.細胞培養(yǎng)常見詞匯 561 3.1.4.分子生物學(xué)常見詞匯 565 3.2 常用的實驗方法 570 3.2.1.電生理學(xué)儀器方法 570 3.2.2 動物實驗的實施 577 3.3 實驗動物常用數(shù)據(jù) 589 3.3.1 實驗動物常用生理數(shù)據(jù) 589 3.3.2 實驗動物常用麻醉劑與肌肉松弛劑 589 3.4 常用試劑、緩沖液、貯存液與酶的配制 592 3.4.1 組織培養(yǎng)常用試劑 592 3.4.2 電泳緩沖劑 593 3.4.3 常用貯存液 3.4.4 常用酶的配制 597 3.5 常用限制性酶識別序列 598 3.6 常用細胞系、細胞培養(yǎng)基、抗生素 603 3.6.1 細胞系 603 3.6.2 常用培養(yǎng)液成分及配方 605 3.6.3 抗生素 607 3.7 核酸、蛋白質(zhì)常用數(shù)據(jù)及相對分子質(zhì)量標準參照物 607 3.7.1 常用核酸的長度與相對分于質(zhì)量 607 3.7.2 常用蛋白質(zhì)分子質(zhì)量標準參照物 607 3.8 赫爾辛基宣言Ⅱ 608 CONTENTS FOREWORD PREFACE 1 Experimental Methhodology in Neurobiology 1 1.1 Methodology of Scientific Thinking 1 1.1.1 Historical impetus of science and technology development 1 1.1.2 Dialectically to seek 3 1.1.3 Dialectically to think 7 1.1.4 Dialectically to verify 17 1.1.5 Dialectically to train 24 1.2 Methodology of Experimental Design 29 1.2.1 Project option 30 1.2.2 Professional design 44 1.2.3 Control design 54 1.2.4 Statistical design 63 1.3 Methodology of Experimental Analysis 79 1.3.1 Data manipulation 79 1.3.2 Statistical analysis 88 1.3.3 Professional analysis 100 1.3.4 Paper writing 109 1.4 Methodology of Electrical Stimulation 117 1.4.1 Basic principle of electrical stimulation 117 1.4.2 Physical properties of electrical stimulation 119 1.4.3 Biological properties of neural preparation 123 1.4.4 Selective stimulation 127 1.4.5 Stimulating current spread 132 1.5 Methodology of Electrical Recording 136 1.5.1 Recording in volume conductor 136 1.5.2 Evoked potential recording 143 1.5.3 Single unitary recording 150 1.5.4 Computer associated recording 158 1.5.5 Intracellular recording 161 1.5.6 Patch clamp recording 174 1.5.7 Determination of velocity spectrum of nerve fibers 178 1.5.8 Determination of location ofaxonal burfication 182 1.5.9 Determination of pain threshold by paw pressing 187 1.6 Methodology of N eurochemistry 190 1.6.1 Tissue and cell fragmentation 190 1.6.2 Synaptosome preparation 193 1.6.3 Electrophoresis 198 1.6.4 Chromatography 203 1.6.5 HPLC 213 1.6.6 Microdialysis 222 1.7 Methodology of Chemical Neuroanatomy 229 1.7.1 Immunocytochemical technique 229 1.7.2 In situ hybridization histochemical technique 239 1.7.3 Receptor localization technique 248 1.7.4 Immunochemical electron microscopic technique 250 1.8 Methodology of N euromorphology 253 1.8.1 HRP tracing technique 253 1.8.2 Fluorescence tracing technique 260 1.8.3 Isotope tracing technique 262 1.8.4 Phaseolus vulgaris leucoagglutinin anterograde tracing technique 269 1.8.5 Laser scanning confocal microscopic technique 271 1.8.6 Flow cytometer technique 278 1.9.Methodology of Molecular Neurobiology 282 1.9.1 Nucleic acid hybridization technique 282 1.9.2 Immunoblotting technique 290 1.9.3 Recombinant DNA technique 296 1.9.4 Polymerase chain reaction technique 306 1.9.5 DNA sequencing 313 1.9.6 mRNA differential display technique 323 1.9.7 Gene chip technique 329 1.9.8 Transgenic animal technique 334 1.10.Methodology of Neural behavior observation 338 1.10.1 Neural bases and commonlg used animals for the behavioral tests 339 1.10.2 Commonlg used methods to test the higher brain funcions 340 1.10.3 Commonlg used methods to examine nociceptive behavior 348 1.11.Brain Imaging 352 1.11.1 Computerized tomography 352 1.11.2 Magnetic resonance imaging 356 1.11.3 Radionuclide tomography 362 1.11.4 Ultrasonography 365 2 Experiments in Neurobiology 368 2.1 Experiments of Neurophysiology 368 2.1.1 Compound action potentials of peripheral nerve in the rabbit 368 2.1.2 Velocity spectrum of afferent nerve fibers in hind limb of rabbit 370 2.1.3 Effects of extending anus to discharges of sacral nerve in the cat 372 2.1.4 Recording of segmental and desending spinal field potentials in the rat 374 2.1.5 Effects of segmental ischemia on spinal field potentials in the rat 375 2.1.6 Recording of evoked cortical potentials of the rabbit 377 2.1.7 Changes of cortical evoked potentials during cerebral ischemia in the rabbit 379 2.1.8 Recording of resting and action potentials of rat DRG neurons 381 2.1.9 Electrical properties of cu1tured cell's membrane in the rat 384 2.1.10 lntracellular recording of action potentials of DRG neurons in the rat 386 2.1.11 Intracel1ular and extracellular recording of electrical activity of dorsa1 column postsynaptic neurcns in the cat 388 2.1.12 Antidromic and orthodromic responses of SCT-DCPS neurons in the rat 390 2.1.13 Intracellular and extracellular recording of electrical activities of dorsal horn neurons in the rat 392 2.1.14 Intracellular and extracellular recording of electrical activities of SST-DCPS neurons in the rat 394 2.1.15 Responses of NRM to peripheral afferent inputs in the rabbit 397 2.1.16 Extracellular recording of nucleus VPL of thalamus in the rabbit 398 2.1.17 Interaction between somatic and visceral afferent input in rat spinal cord dorsal horn neurons 400 2.1.18 Role of ATP-sensitive potassium channel in cerebral hypoxia and its preconditioning 401 2.2.Experiments of N eurochemistry 408 2.2.1 Effects of brain extracts of hypoxia tolerant mice on hypoxic tolerance in mice 408 2.2.2 Changes of monoamnie in brain tissue of mice exposed acutely and epeatedly to hypoxia 411 2.2.3 Effects of diflerent local stimulation on monoamine content in rabbit cerebrospinal fluid 414 2.2.4 Effects of different local stimulation on Ca2+,Mg2+ contents in rabbit cerbrospinal fluid 417 2.2.5 Measurement of adenosine of rabbit brain using microdialysis 420 2.2.6 Effects of brain extract of hypoxia preconditioned mice on ccerbral synaptosome activity 421 2.2.7 Protection of brain tissue extracts of hypoxia preconditioned mice from hypoxic insult of PC12 cells 423 2.3 Immunohistochemical Experiments for Neural Tissues 425 2.3.1.Substance P-like immunoreactive structures in the dorsal hom of medulla oblongata and nucleus raphe magnus in the rat 425 2.3.2 μ-opioid receptor-like and calcitonin gene-related peptide-like immunoreactive posivtive neurons coexisting in the trigeminal ganglion in the rat 428 2.3.3 Connections of substance P-like immunoreactive positive terminals and calcium-binding proteins-like reactive positive neurons in the superficiallaminae of the dorsal horn of medulla oblongata in the rat 430 2.3.4 Observation of FOS-like positive neurons in the dorsal horn of the medulla oblongata after orofacial injection of formalin in the rat 432 2.3.5 5-hydroxytraptamine-like positive neurons in the raphe nuclei expressing FOS protein 435 2.3.6 Projection from neurons in the dorsal hom of medulla oblongata to the thalamus expressing FOS protein 437 2.3.7 Distribution of Calbindin-D28k mRNA positive neurons in the trigeminal ganglion in the rat 440 2.3.8 Serotonin-like positive structure in the periaqueducal gray 444 2.3.9 Synaptic connection of GABAergic terminals and substance P receptors-like positive neurons in the nucleus of the solitary tract in the rat 446 2.3.10 Synaptic connection of GABAergic neurons and substance P-ergic terminals in the dorsal horn of the medulla oblongata in the rat 449 2.4 Experiments of N euromorphology 452 2.4.1 Spinal cord dorsal horn neurons projecting to STN in the rat 452 2.4.2 Spinal cord dorsal horn neurons projecting to both LCN and DCN in the rat 454 2.4.3 Ultra microstructure of rat SST-DCPS neurons 455 2.4.4 SST-DCPS neurons projectng to both somatic and visceral sensory nuclei in the rat 457 2.4.5 A model of electromagent-controlled pinching semi-transection injury in rat spinal cord 459 2.4.6 Projection from the parabrachial nuc1eus to the central nuc1eus of amygdaloid in the rat 461 2.4.7 Serotoninergic projrctions form the midbrain periaqueductal gray to the nucleus accumbens in the rat 464 2.4.8 Substance P receptor-like immunoreactive neurons in the dorsal horn of medulla oblongata send axons to the gelatinosus thalamic nucleus in the rat 466 2.4.9 Collateral projections of nucleus raphe magnus to dorsal horn of niedulla oblongata and spinal cord in the rat 469 2.4.10 Descending collateral projections of serotoninergic neurons in the periaqueductal gray and dorsal raphe nucleus 472 2.4.11 Proj ection from spinal trigeminal nucleus to trigeminal motor nucleus in the rat 474 2.4.12 PHA-L anterograde tracing 477 2.4.13 Projection from superficiallaminae of dorsal horn of medulla oblongata to parabrachial nucleus and ventroposterior medial thalamic nuclues 480 2.4.14 Indirectly projection from the periaqueductal gray to the trigeminal sensory nuclei via the nucleus raphe magnus 483 2.4.15 Indirectly projection fronithe periaqueductal gray to the spinal trigeminal nucleus via the nucleus raphe magnus 486 2.4.16 Synaptic connection of neurons in the dorsa1.horn of medulla oblongata projecting to thalamus and serotonin-like positive terminals 489 2.5 Experiments in Molecular Nueurobiology 492 2.5.1 Isolation of specifically expressed genes by differential display 492 2.5.2 Separation and detection of hypoxia inducible factor 1 from culture cells after chronic hypoxia 497 2.5.3 Total RNA extraction and cDNA preparation of the rat trigeminal ganglion 500 2.5.4 Expression of 5-HT3 receptor subtype mRNA in the rat trigeminal ganglion 502 2.5.5 Expression of choline acetyltransferase in the rat striatum and the recovery of its DNA fragment 505 2.5.6 Subcloning of choline acetyltransferase DNA fragment 507 2.5.7 Preparation of ChAT-pGEM recombinant plasmid DNA and analysis by restriction enzyme digestion 510 2.5.8 Sequencing of ChAT-pGEM recombinant plasmind DNA 513 2.5.9 SDS-polyacrylamide gel electrophoresis analysis of choline acetyItrandferase-expressed protem 516 2.5.10 Western blot analysis of choline acetyltransferase in the rat striatwn 520 2.5.11 Effects of sex hormone to the upregulation of PPD mRNA in the spinal cord induced by peripheral noxious stimulation 523 2.5.12 Cloning of diffeential-expression gene in primary sensory neurons(dorsal root ganglion) after partial transection of sciatic nerve by DD-PCR method 526 2.6 Experiments of Neural Behavior 530 2.6.1 Bilateral changes of nociceptive sensitivity in rats with one paw inflamed 530 2.6.2 Score of nociceptive responses in inflammated rat by formalin injection 532 2.6.3 Role of neural reflex factor in changes of nociceptive sensitivity of non-inflamed side in rats with one paw inflamed 533 2.6.4 Role of humoral factor in changes of nociceptive sensitivity of non-inflamed side in rats with one paw inflamed 536 2.6.5 Effects of acute repeated hypoxia on hypoxic tolerance of mice 537 2.6.6 Changes of hypoxic tolerance in anesthetized and excited mice 539 2.6.7 Reproduction of spinal cord transection and hemitransection model in the rat 541 2.6.8 Effects of the chronic restrain stress on the spatial learn and memory ability in the rat 543 2.6.9 Examinations on the spontaneous activity and anxiety level in the post-trauma stress disorder model of rat 548 3 Information in Nenrobiology 552 3.1.Common Concepts in Neurobiology 552 3.1.1 Common concept of biological electricity 552 3.1.2 Common vocabulary of biochemistry 558 3.1.3 Common vocabulary of cell culture 561 3.1.4 Common vocabulary of molecular biology 565 3 2 Ordinary Experimental Method 570 3 2.1 Customary instrument and its usage in electrophysiology 570 3.2.2 Animal m.anagenient in common use 577 3.3 Regular Data of Experimental Animals 589 3.3.1 Natural data of physiology 589 3.3.2 Nonnal anesthetics and musc1e relaxants 589 3.4 Preparation of Regular Reagents,Buffers,Stocks Solution and Enzymes 592 3.4.1 Reagents of tissue culture 592 3.4.2 Electrophoretic buffers 593 3.4.3 Regular stock solution 595 3.4.4 Preparation of regular enzymes 597 3.5 Recognition Sequences of Ordinary Restriction Enzymes 598 3.6 Cell Line,Cell Culture Medium and Antibiotics 603 3.6.1 Cellline 603 3.6.2 Composition and prescription of regular cell culture medium 605 3.6.3 Antibiotics 607 3.7 Data of Nucleic Acid and Protein in Common Use 607 3.7.1 Length and molecular weight of nuc1eic acid 607 3.7.2 Molecular weight marker of protein 607 3.8 The Declaration of Helsinski Ⅱ 608
你還可能感興趣
我要評論
|