《仿生科學與工程專業(yè)英語》教材以仿生學原理及其多學科應(yīng)用方向為基礎(chǔ),參考國外原版課程素材和國際高水平學術(shù)期刊論文,系統(tǒng)介紹仿生相關(guān)學會組織與機構(gòu)、仿生設(shè)計原則與方法、運動仿生學、仿生材料、仿生機械、仿生健康和仿生智能等內(nèi)容。本教材面向國家建設(shè)現(xiàn)代化教育強國的戰(zhàn)略需求,落實立德樹人根本任務(wù),通過提高仿生科學與工程專業(yè)領(lǐng)域的語言知識水平及綜合運用能力,強化提升學生的國際視野和綜合素養(yǎng),培養(yǎng)學生成為我國強有力參與仿生科技領(lǐng)域國際事務(wù)與國際競爭、建設(shè)現(xiàn)代化科技強國的優(yōu)秀人才。
本教材不僅適用于仿生科學與工程專業(yè)本科生教學,也可作為該專業(yè)碩博研究生專業(yè)英語的參考用書,還可作為材料科學與工程、機械設(shè)計、人工智能等多學科專業(yè)英語教學和自學參考用書。
郭麗,吉林大學生物與農(nóng)業(yè)工程學院教授,博士生導師,英國高等教育學會研究員。2011年在美國堪薩斯州立大學(Kansas State University)獲得博士學位,2011年-2012年相繼在美國堪薩斯州立大學和密西根州立大學(Michigan State University)從事博士后研究工作。主講《農(nóng)業(yè)機械化及其自動化專業(yè)英語》和《仿生科學與工程專業(yè)英語》等本科生課程;主講《現(xiàn)代設(shè)計方法與創(chuàng)新思維》和《環(huán)境污染與仿生監(jiān)測控制技術(shù)》等研究生課程,具有豐富教學經(jīng)驗。
Chapter 1 Introduction 1
1.1 Features of English for Special Purposes 1
1.2 Introduction to Bionics 1
1.2.1 Learning from Nature 2
1.2.2 Terms and Definitions 4
1.3 Professional Organizations/Institutions 5
1.3.1 The Key Laboratory of Bionic Engineering (Ministry of Education) of Jilin University (KLBE) 6
1.3.2 The International Society of Bionic Engineering (ISBE) 6
1.3.3 Bionics International (BIN) 7
1.3.4 The Laboratory of Bionics Engineering of the University of Seville (LBE) 8
1.3.5 The Bionics Engineering Lab of the University of Utah (BEL) 8
1.3.6 The Center for Extreme Bionics (CEB) 8
1.3.7 Biomimicry Institute (BI) 9
1.3.8 The Institute of Electrical and Electronics Engineers (IEEE) 9
Key vocabularies 10
Exercises 11
Chapter 2 Fundamentals and Principles of Bionics 13
2.1 Two Strategic Approaches of Bionics 13
2.2 Design Paradigms 15
2.2.1 Problem-Driven BID 16
2.2.2 Solution-Driven BID 19
2.2.3 Biomimicry 23
Key vocabularies 25
Exercises 27
Chapter 3 Enhance the Success of Biomimetic Programs 29
3.1 Biomimetic Approaches to Engineering Designs May be Suboptimal 30
3.2 Cases of Evaluation of Bionic Design 30
3.2.1 Designing Reversible Adhesives Based on Gecko Toe Pads 30
3.2.2 Development of High Performance Materials Based on Spider Dragline Silk 34
3.2.3 Worms Show Way to Efficiently Move Soil 37
3.3 Pathway to Enhanced Outcomes 39
3.3.1 Specification of the Target Function(s) 39
3.3.2 Choice of Model 40
3.3.3 Extraction of Working Principles 40
3.3.4 Designing Prototypes 42
3.3.5 Testing Prototypes 42
Key vocabularies 42
Exercises 44
Chapter 4 Biomimetics of Motion 47
4.1 Biomimics for Adaptivity 47
4.1.1 Micro and Macro 47
4.1.2 Adaptivity through Disassembly 48
4.1.3 Adaptivity through Motion 49
4.2 Motion versus Change 49
4.2.1 Motion as Change on a Specific Time-scale 49
4.2.2 Tropic and Nastic Movements 50
4.2.3 Locomotion 51
4.3 Case Studies of Motion in Nature 53
4.3.1 Plants and Seeds 53
4.3.2 Soft-Bodied Systems 60
4.3.3 Rigid Systems 67
Key vocabularies 73
Exercises 78
Chapter 5 Bioinspired Materials 81
5.1 Background 81
5.1.1 Box 1 | Essentials of mechanical properties 83
5.1.2 Box 2 | Common design motifs of natural structural materials 87
5.2 Structure and Properties of Natural Materials 89
5.3 Methods of Processing Hierarchical Materials 95
5.4 Looking Ahead 99
Key vocabularies 102
Exercises 106
Chapter 6 Bioinspired Robots 109
6.1 Bioinspired Morphologies 110
6.2 Bioinspired Sensors 112
6.2.1 Vision 112
6.2.2 Audition 114
6.2.3 Touch 115
6.2.4 Smell 116
6.2.5 Taste 117
6.3 Bioinspired Actuators 117
6.4 Bioinspired Control Architectures 124
6.4.1 Behavior-based Robotics 124
6.4.2 Learning Robotics 124
Key vocabularies 126
Exercises 130
Chapter 7 Artificial Intelligence 131
7.1 Introduction to AI 131
7.2 Achieving AI 135
7.3 Machine Learning 136
7.3.1 Supervised Learning 137
7.3.2 Unsupervised Learning 139
7.3.3 Semi Supervised Learning 140
7.3.4 Reinforcement Learning 141
7.4 Challenges for AI 144
7.5 Application Areas of AI 145
7.5.1 Robots and Telemedicine 146
7.5.2 Education 148
Key vocabularies 149
Exercises 150
References 152