本書介紹了兩種典型電子產(chǎn)品汽車壓力傳感器和FPCB的制造工藝研究,分別對其關(guān)鍵制造工藝過程進(jìn)行了多場多尺度建模分析,涵蓋了分子動力學(xué)與有限元建模分析、工藝參數(shù)設(shè)計(jì)與優(yōu)化、工藝性能實(shí)驗(yàn)驗(yàn)證。全書共10章,匯集了兩種典型電子產(chǎn)品的關(guān)鍵工藝過程,包括銅-銅引線鍵合工藝中微觀接觸過程,六種典型材料引線鍵合工藝性能比較,汽車壓力傳感器灌封工藝中芯片殘余應(yīng)力分析,汽車壓力傳感器引線鍵合焊點(diǎn)的熱循環(huán)失效分析,F(xiàn)PCB化錫工藝分子動力學(xué)研究,F(xiàn)PCB曝光工藝中光場分析,F(xiàn)PCB蝕刻工藝中蝕刻劑噴淋特性研究,F(xiàn)PCB蝕刻腔中蝕刻劑濃度分布與流場特性分析,F(xiàn)PCB蝕刻工藝中蝕刻腔幾何形貌演化過程分析,F(xiàn)PCB多蝕刻腔蝕刻過程分析。本書針對MEMS和FPCB制造工藝中的實(shí)際問題,建立物理模型和數(shù)值模擬模型,基于有限元和分子動力學(xué)方法,模擬電子產(chǎn)品制造過程中材料、微觀結(jié)構(gòu)的演變,揭示加工過程中電子產(chǎn)品變形、應(yīng)力、缺陷的形成機(jī)理與演化機(jī)制,在此基礎(chǔ)上提出變形、應(yīng)力與缺陷的抑制策略及調(diào)控理論,指導(dǎo)工藝優(yōu)化,提高電子產(chǎn)品良率。
李輝,中共黨員,武漢大學(xué)三級教授、博導(dǎo),湖北省特聘專家,湖北省自然科學(xué)基金創(chuàng)新群體項(xiàng)目負(fù)責(zé)人,中組部"青年千人計(jì)劃”入選者,國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目首席科學(xué)家,IEEE高級會員,F(xiàn)任武漢大學(xué)工業(yè)科學(xué)研究院副院長。作者于1995年至2002年就讀于華中科技大學(xué)機(jī)械科學(xué)與工程學(xué)院獲得工學(xué)學(xué)士與碩士學(xué)位。于2002年獲得新加坡科研局博士獎學(xué)金,在新加坡國立大學(xué)(NUS)電子與計(jì)算機(jī)系和新加坡數(shù)據(jù)存儲研究所(DSI)進(jìn)行博士學(xué)位的聯(lián)合培養(yǎng),師從于新加坡數(shù)據(jù)存儲研究所高級研究科學(xué)家(Senior research scientist)劉波博士(教育部長江學(xué)者講座教授)和新加坡國立大學(xué)電子與計(jì)算機(jī)工程系教授Chong Tow Chong(現(xiàn)任新加坡理工大學(xué)(SUTD)校長),并于2007年獲得工學(xué)博士學(xué)位。于2008年進(jìn)入美國加州大學(xué)圣地亞哥分校(UCSD)從事博士后研究,師從于UCSD機(jī)械和科學(xué)工程學(xué)院前主席、磁記錄中心首席教授Frank E. Talke院士。2005年至2013年就職于日立公司(Hitachi)亞洲研究與發(fā)展中心,其中于2006年在日立總部中央研究所交流半年,2008年起擔(dān)任研發(fā)中心項(xiàng)目領(lǐng)導(dǎo)及副經(jīng)理。在新加坡、日本和美國長達(dá)11年的學(xué)習(xí)和科研工作經(jīng)歷,主攻磁記錄硬盤可靠性研究,實(shí)現(xiàn)微機(jī)電系統(tǒng)的高精度定位控制設(shè)計(jì)和應(yīng)用。主持完成與美國美國加州大學(xué)圣地亞哥分校,新加坡數(shù)據(jù)存儲研究所和日立日本本部的聯(lián)合科研項(xiàng)目7項(xiàng)。2012年入選國際電器與電子工程師學(xué)會(IEEE)高級會員,2013年入選中組部"青年千人計(jì)劃”,獲聘為武漢大學(xué)教授、博士生導(dǎo)師,2014年被授予湖北省特聘專家稱號。作者主要從事先進(jìn)制造工藝過程、在線監(jiān)測及產(chǎn)品可靠性等研究。發(fā)表SCI論文110余篇,發(fā)表國際會議論文60余篇;出版中英文專著4部,其中1部獲國家科學(xué)技術(shù)學(xué)術(shù)著作出版基金資助;申請/授權(quán)國家發(fā)明專利82項(xiàng);制定團(tuán)體標(biāo)準(zhǔn)6項(xiàng);國際會議應(yīng)邀報(bào)告4次;獲國家科學(xué)進(jìn)步一等獎1項(xiàng)。作者承擔(dān)科研項(xiàng)目包括國家自然科學(xué)基金委重大科研儀器研制項(xiàng)目(教育部唯一推薦)、國家重點(diǎn)研發(fā)計(jì)劃"增材制造與激光制造”重點(diǎn)專項(xiàng)、國家重點(diǎn)研發(fā)計(jì)劃"網(wǎng)絡(luò)協(xié)同制造和智能工廠”重點(diǎn)專項(xiàng)(首席)、JKW基礎(chǔ)加強(qiáng)項(xiàng)目、湖北省技術(shù)創(chuàng)新專項(xiàng)(重大項(xiàng)目)、湖北省自然科學(xué)基金創(chuàng)新群體項(xiàng)目、湖北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目、廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目、四川省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目、廣東省科技創(chuàng)新戰(zhàn)略專項(xiàng)資金自由申請項(xiàng)目、深圳市基礎(chǔ)研究計(jì)劃項(xiàng)目、深圳市協(xié)同創(chuàng)新計(jì)劃國際合作研究項(xiàng)目、華為公司技術(shù)咨詢報(bào)告。
Chapter 1 Investigation on micro contact in Cu-Cu wire bonding process 001
1.1 Introduction 001
1.2 Molecular dynamics modeling of Cu-Cu wire bonding 003
1.3 Results and discussions 005
1.3.1 Formation and breakage processes of Cu-Cu weld 005
1.3.2 Analysis of Cu-Cu indentation morphology 007
1.3.3 Analysis of Cu-Cu atomic stress distribution 008
1.4 Conclusions 011
References 011
Chapter 2 Investigation on wire bonding performance with six typical
material pairs 014
2.1 Introduction 015
2.2 Molecular dynamics modeling of six material pairs 016
2.3 Results and discussions 018
2.3.1 Analysis of bonding forces and system energy 018
2.3.2 Analysis of atomic morphology for six material pairs 022
2.3.3 Analysis of atomic stress distribution for six material pairs 023
2.3.4 Four critical displacement points of six material pairs 025
2.4 Conclusions 028
References 028
?
Chapter 3 Investigation on residual stress on chip of automobile
pressure sensor in potting process 032
3.1 Introduction 032
3.2 Thermal experiment of MEMS pressure sensor 034
3.3 Analytic analysis of thermal stress on sensitive structure 036
3.4 Modeling and Simulation 038
3.4.1 Geometric model of MEMS pressure sensor 039
3.4.2 Finite element model of MEMS pressure sensor 039
3.4.3 Finite element simulation of residual stress 040
3.5 Conclusions 044
References 045
Chapter 4 Investigation on thermal cycle failure of wire bonding
weld in automobile pressure sensor 047
4.1 Introduction 048
4.2 Thermal cycling experiments of the MEMS pressure sensor 049
4.2.1 A sample of thermal cycling test 049
4.2.2 Experimental methods of the thermal fatigue test 050
4.2.3 Experimental results and analysis under thermal cycles 052
4.3 Numerical simulation 053
4.3.1 Theoretical model of thermal fatigue 053
4.3.2 Geometric model of the MEMS pressure sensor 055
4.3.3 Simulation model of thermal fatigue of solder joint 056
4.3.4 Simulation results of solder joint failures 058
4.4 Conclusions 062
References 063
Chapter 5 Investigation on acoustic injection on automobile
MEMS accelerometer 066
5.1 Introduction 066
5.2 Experimental investigation of acoustic injection 068
5.3 Modeling and simulation 070
5.3.1 Disassembly of inertial measurement unit (IMU)
MPU6050 070
5.3.2 Geometric model of accelerometer unit 070
5.3.3 Finite element model of accelerometer sensitive structure 072
5.3.4 Simulation results and discussion of acoustic injection 074
5.4 Conclusions 080
References 081
Chapter 6 Investigation on wetting behavior of Sn droplet on FPCB
substrate surfaces 083
6.1 Introduction 083
6.2 Models and methods of different surfaces 085
6.2.1 Modified embed atom method (MEAM) potential 086
6.2.2 Simulation models of different surfaces 087
6.2.3 Experimental procedures of wetting behavior
on different surfaces 090
6.3 Results and discussion 090
6.3.1 Effect of temperature on wetting behavior 090
6.3.2 Effect of roughness on wetting behavior 094
6.3.3 Effect of Sn surface on wetting behavior 097
6.3.4 Contact angle measurement on different substrate surfaces 101
6.4 Conclusions 103
References 103
Chapter 7 Investigation on etchant spraying characteristics in FPCB
etching process 107
7.1 Introduction 108
7.2 Equipment of the FPCB etching process 110
7.3 Numerical simulation of multi-nozzle spraying system 111
7.3.1 Governing equations of fluid dynamics 111
7.3.2 Simulation model of spraying equipment 112
7.4 Results and discussions 114
7.5 Conclusions 122
References 123
?
Chapter 8 Investigation of etchant concentration distribution and
fluid characteristics in FPCB etching cavity 126
8.1 Introduction 126
8.2 Model formulation and method of etching process 129
8.2.1 Governing equations of fluid dynamics and mass flux 129
8.2.2 Simulation model of the FPCB etching cavity 130
8.3 Results and discussions 133
8.4 Conclusions 140
References 140
Chapter 9 Investigation of etching cavity evolution in FPCB
etching process 143
9.1 Introduction 143
9.2 Equipment of the FPCB etching process 144
9.3 Numerical simulation of the FPCB etching process 146
9.3.1 Governing equations of the fluid dynamics 146
9.3.2 Simulation model of spraying and etching domain 147
9.4 Results and discussions 149
9.5 Conclusions 153
References 153
Appendix 156