《隨機(jī)積分導(dǎo)論(第2版)(英文版)》是一部可讀性很強(qiáng)的講述隨機(jī)積分和隨機(jī)微分方程的入門教程。將基本理論和應(yīng)用巧妙結(jié)合,非常適合學(xué)習(xí)過概率論知識的研究生,學(xué)習(xí)隨機(jī)積分。運用現(xiàn)代方法,隨機(jī)積分的定義是為了可料被積函數(shù)和局部鞅,緊接著是連續(xù)鞅的變分公式ito變化!峨S機(jī)積分導(dǎo)論(第2版)(英文版)》包括在布朗運動的描述、鞅的hermite多項式、feynman-kac泛函和schrodinger方程。這是第二版,討論了cameron-martin-giranov變換,并且在最后一章引入隨機(jī)微分方程和一些學(xué)生用的練習(xí)。
Preface
Preface to the First Edition
Abbreviations and Symbols
1. Preliminaries
1.1 Notations And Conventions
1.2 Measurability, Lp Spaces And Monotone Class Theorems
1.3 Functions of Bounded Variation And Stieltjes Integrals
1.4 Probability Space, Random Variables, Filtration
1.5 Convergence, Conditioning
1.6 Stochastic Processes
1.7 Optional Times
1.8 Two Canonical Processes
1.9 Martingales
1.10 Local Martingales
1.11 Exercises
2. Definition of The Stochastic Integral
2.1 Introduction
2.2 Predictable Sets And Processes
2.3 Stochastic Intervals
2.4 Measure on The Predictable Sets
2.5 Definition of The Stochastic Integral
2.6 Extension To Local Integrators And Integrands
2.7 Substitution Formula
2.8 A Sufficient Condition for Extendability of Hz
2.9 Exercises
3. Extension of The Predictable Integrands
3.1 Introduction
3.2 Relationship Between P, O, And Adapted Processes
3.3 Extension of The Integrands
3.4 A Historical Note
3.5 Exercises
4. Quadratic Variation Process
4.1 Introduction
4.2 Definition And Characterization of Quadratic Variation
4.3 Properties of Quadratic Variation For An L2-Wartingale
4.4 Direct Definition of ΜM
4.5 Decomposition of (M)2
4.6 A Limit Theorem
4.7 Exercises
5. The Ito Formula
5.1 Introduction
5.2 One-Dimensional It5 Formula
5.3 Mutual Variation Process
5.4 Multi-Dimensional It5 Formula
5.5 Exercises
……
6. Applications of The Ito Formula
7. Local Time and Tanaka's Formula
8. Reflected Brownian Motions
9. Generalized Fro Formula,Change of Time and Measure
10. Stochastic Differential Equations