關(guān)于我們
書單推薦
新書推薦
|
醫(yī)學(xué)物理學(xué)(英文改編版)
醫(yī)學(xué)物理學(xué)是運(yùn)用物理學(xué)的理論、方法和技術(shù),研究有生命的對象,并以在醫(yī)學(xué)領(lǐng)域方面的實(shí)際應(yīng)用和理論研究為目的。其中包括熱醫(yī)學(xué)、運(yùn)動(dòng)醫(yī)學(xué)、激光醫(yī)學(xué)、超聲醫(yī)學(xué)、電子醫(yī)學(xué)、磁醫(yī)學(xué)、微波醫(yī)學(xué)、核醫(yī)學(xué)等。它近期發(fā)展迅速,其原因之一是科學(xué)發(fā)展本身的需要,二是物理學(xué)自身的特點(diǎn)。生命科學(xué)的發(fā)展正從宏觀走向微觀,從定性走向定量,從細(xì)胞水平走向分子水平,從手工的、機(jī)械的、接觸型的測試手段走向自動(dòng)化、智能化、非接觸型的測試手段。而物理學(xué)既有系統(tǒng)的定量的理論,又有精密的先進(jìn)的實(shí)驗(yàn)方法,故而在生命科學(xué)發(fā)展中,它具有重要作用。
更多科學(xué)出版社服務(wù),請掃碼獲取。
CONTENTS
Chapter 1 Introduction 1 1.1 WHY STUDY PHYSICS? 1 1.2 TALKING PHYSICS 1 1.3 PHYSICS FOR MEDICINE AND BIOLOGY 2 1.3.1 Physics in Life Science 2 1.3.2 Biomedical Applications 3 1.4 THE USE OF MATHEMATICS 3 1.4.1 Mathematics Base 3 1.4.2 Ratios and Proportions 3 1.4.3 Approximation 4 1.5 SCIENTIFIC NOTATION AND SIGNIFICANT FIGURES 6 1.5.1 Rules for Identifying Significant Figures 6 1.5.2 Significant Figures in Calculations 7 1.6 UNITS 8 1.7 DIMENSIONALANALYSIS 10 1.8 PROBLEM-SOLVING TECHNIQUES 12 Chapter 2 Mechanics 16 2.1 UNIFORM CIRCULAR MOTION 16 2.1.1 Angular Displacement and Angular Velocity 16 2.1.2 Radian Measure 17 2.1.3 Relation between Linear and Angular Speed 18 2.1.4 Period and Frequency 18 2.2 RADIAL ACCELERATION 19 2.2.1 Direction of Radial Acceleration 19 2.2.2 Magnitude of the Radial Acceleration 20 2.3 TANGENTIAL ACCELERATION AND ANGULAR ACCELERATION 22 2.3.1 Tangential Acceleration and Angular Acceleration 22 2.3.2 Constant Angular Acceleration 22 2.4 ROTATIONAL KINETIC ENERGY AND ROTATIONAL INERTIA 23 2.5 TORQUE 27 2.5.1 Torque 27 2.5.2 Lever Arms 30 2.6 ROTATIONAL EQUILIBRIUM 32 2.7 ANGULAR MOMENTUM 36 2.7.1 Angular Momentum 36 2.7.2 The Vector Nature of Angular Momentum 39 Chapter 3 Fluids 45 3.1 STATESOF MATTER 45 3.2 FLUID FLOW 45 3.2.1 Types of Fluid Flow 45 3.2.2 The Ideal Fluid 46 3.2.3 The Continuity Equation 46 3.3 BERNOULLI'S EQUATION 48 3.4 VISCOSITY 51 3.4.1 Poiseuille's Law 53 3.4.2 Application of Viscous Flow 53 3.5 VISCOUS DRAG 54 3.6 SURFACE TENSION 55 3.6.1 Application: How Insects Can Walk on the Surface of a Pond 55 3.6.2 Application: Surfactant in the Lungs 56 3.6.3 Bubbles 56 Chapter 4 Elasticity and Oscillations 60 4.1 ELASTIC DEFORMATIONS OF SOLIDS AND HOOKE'S LAW 60 4.2 SHEAR AND VOLUME DEFORMATIONS 62 4.2.1 Shear Deformation 62 4.2.2 Volume Deformation 64 4.3 SIMPLE HARMONIC MOTION 65 4.4 THE PERIOD AND FREQUENCY FOR SHM 68 4.4.1 Definitions of Period and Frequency 68 4.4.2 AVertical Mass and Spring 70 4.5 GRAPHICAL ANALYSIS OF SHM 72 4.6 THE PENDULUM 73 4.6.1 Simple Pendulum 73 4.6.2 Physical Pendulum 74 4.7 DAMPED OSCILLATIONS, FORCED OSCILLATIONS AND RESONANCE 76 Chapter 5 Waves 82 5.1 BASIC PROPERTIES OF WAVES 82 5.1.1 Waves and Energy Transport 82 5.1.2 Transverse and Longitudinal Waves 83 5.1.3 Periodic Waves 85 5.2 MATHEMATICAL DESCRIPTION OF A WAVE 86 5.2.1 Traveling Waves 86 5.2.2 Harmonic Traveling Waves 86 5.3 GRAPHING WAVES 88 5.4 PRINCIPLE OF SUPERPOSITION 89 5.5 REFLECTION AND REFRACTION 90 5.5.1 Reflection 90 5.5.2 Change in Wavelength at a Boundary 91 5.5.3 Refraction 91 5.6 INTERFERENCE AND DIFFRACTION 92 5.6.1 Interference 92 5.6.2 Coherence 93 5.6.3 Diffraction 94 5.7 STANDING WAVES 94 Chapter 6 Sound 100 6.1 SOUND WAVE 100 6.1.1 Basic Properties of Sound Wave 100 6.1.2 Frequency Ranges of Animal Hearing 101 6.1.3 Attenuation of Sound Waves 101 6.1.4 Amplitude and Intensity of Sound Waves 102 6.2 THE HUMAN EAR 105 6.2.1 Structure of human Ear 105 6.2.2 Loudness 106 6.2.3 Pitch 106 6.2.4 Localization 106 6.3 BEATS 106 6.4 THE DOPPLER EFFECT 108 6.4.1 Moving Source 109 6.4.2 Moving Observer 109 6.4.3 Shock Waves 110 6.5 ECHOLOCATION AND MEDICAL IMAGING 111 6.5.1 Animal Echolocation 111 6.5.2 Sonar and Radar 112 6.5.3 Medical Applications of Ultrasound 112 Chapter 7 Electrostatic Fields 115 7.1 ELECTRIC FIELDS 115 7.1.1 Electric Charge 115 7.1.2 Coulomb's Law 119 7.1.3 The Electric Field 122 7.2 MOTION OF A POINT CHARGE IN A UNIFORM ELECTRIC FIELD 130 7.3 GAUSS'S LAW FOR ELECTRIC FIELDS 134 7.3.1 Gauss's Law 134 7.3.2 Using Gauss's Law to Find the Electric Field 136 7.4 ELECTRIC POTENTIAL ENERGY 138 7.5 ELECTRIC POTENTIAL 141 7.5.1 Electric Potential 141 7.5.2 The Relationship between Electric Field and Potential 147 7.6 CAPACITORS 149 7.7 DIELECTRICS 152 7.7.1 Dielectrics 152 7.7.2 Polarization in a Dielectric 153 7.8 ENERGY STORED IN A CAPACITOR 156 7.8.1 Energy Stored in a Capacitor 156 7.8.2 Energy Stored in an Electric Field 158 Chapter 8 Electric Current and Circuit 163 8.1 ELECTIC CURRENT 163 8.1.1 Conventional Current 163 8.1.2 Electric Current in Liquids and Gases 164 8.1.3 Application: Current in Neon Signs and Fluorescent Lights 164 8.2 EMF AND CIRCUITS 165 8.2.1 Circuit Symbols 165 8.2.2 EMF in an Electric Circuit 165 8.2.3 Circuits 166 8.3 MICROSCOPIC VIEW OF CURRENT IN A METAL: THE FREE-ELECTRON MODEL 167 8.3.1 The Free-electron Model 167 8.3.2 Relationship between Current and Drift Velocity 168 8.4 RESISTANCE AND RESISTIVITY 169 8.4.1 Resistance and Ohm's Law 169 8.4.2 Microscopic Origin of Ohm's Law 170 8.4.3 Resistivity 170 8.4.4 Resistivity of Water 171 8.4.5 Resistivity Depends on Temperature 172 8.4.6 Resistors 173 8.4.7 Internal Resistance of a Battery 173 8.5 KIRCHHOFF'S RULES 174 8.6 SERIES AND PARALLEL CIRCUITS 175 8.6.1 Resistors in Series 175 8.6.2 EMFs in Series 176 8.6.3 Capacitors in Series 176 8.6.4 Resistors in Parallel 177 8.6.5 EMFs in Parallel 180 8.6.6 Capacitors in Parallel 180 8.7 CIRCUIT ANALYSIS USING KIRCHHOFF'S RULES 181 8.8 RC CIRCUITS 183 8.8.1 Charging RC Circuit 183 8.8.2 Discharging RC Circuit 185 8.8.3 Application of RC Circuits in Neurons 185 Chapter 9 Magnetic Forces and Fields 190 9.1 MAGNETIC FIELDS 190 9.1.1 Permanent Magnets and Magnetic Dipoles 190 9.1.2 Magnetic Field Lines 192 9.1.3 The Earth's Magnetic Field 192 9.1.4 Application: Magnetotactic Bacteria 193 9.2 MAGNETIC FORCE ON A POINT CHARGE 193 9.2.1 Cross Product of Two Vectors 194 9.2.2 Direction of the Magnetic Force 195 9.3 MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD 199 9.3.1 Charged Particle Moving Perpendicularly to A Uniform Magnetic Field 199 9.3.2 Motion of A Charged Particle in A Uniform Magnetic Field: General 203 9.3.3 A Charged Particle in Crossed E and B Fields 204 9.4 MAGNETIC FORCE ON A CURRENT- CARRYING WIRE 208 9.5 TORQUE ON A CURRENT LOOP 210 9.5.1 Torque on a Magnetic Dipole 211 9.5.2 Application: Electric Motor 211 9.5.3 Application: Galvanometer 212 9.5.4 Application: Audio Speakers 213 9.6 MAGNETIC FIELD DUE TO AN ELECTRIC CURRENT 214 9.6.1 Magnetic Field due to a Long Straight Wire 214 9.6.2 Magnetic Field due to a Circular Current Loop 216 9.6.3 Magnetic Field due to a Solenoid 217 9.6.4 Application: Magnetic Resonance Imaging 218 9.7 AMPèRE'S LAW 218 9.8 MAGNETIC MATERIALS 219 9.8.1 Paramagnetism 220 9.8.2 Ferromagnetism 220 9.8.3 Diamagnetism 221 9.8.4 Application: Electromagnets 221 9.8.5 Application: Magnetic Storage 221 Chapter 10 Electromagnetic Induction 226 10.1 MOTIONAL EMF 226 10.2 FARADAY'S LAW, LENZ'S LAW, EDDY CURRENTS 229 10.2.1 Faraday's Law 229 10.2.2 Lenz's Law 233 10.2.3 Eddy Currents 236 10.3 INDUCED ELECTRIC FIELDS, INDUCTANCE 237 10.3.1 Induced Electric Fields 237 10.3.2 Inductance 238 10.4 LR CIRCUITS 241 10.5 MAXWELL'S EQUATIONS AND ELECTROMAGNETIC WAVES 244 10.5.1 Accelerating Charges Produce Electromagnetic Waves 244 10.5.2 Maxwell's Equations 245 10.6 THE ELECTROMAGNETIC SPECTRUM 245 10.6.1 Visible Light 246 10.6.2 Infrared 246 10.6.3 Ultraviolet 247 10.6.4 Radio Waves 248 10.6.5 Microwaves 248 10.6.6 X-Rays and Gamma Rays 249 Chapter 11 Geometric Optics 253 11.1 THE FORMATION OF IMAGES THROUGH REFLECTION OR REFRACTION 253 11.1.1 Real and Virtual Images 253 11.1.2 Plane Mirrors 254 11.2 SPHERICAL MIRRORS 254 11.2.1 Convex Spherical Mirror 254 11.2.2 Concave Spherical Mirror 256 11.3 THIN LENSES 256 11.3.1 Focal Points and Principal Rays 257 11.3.2 The Magnification and Thin Lens Equations 258 11.4 LENSES IN COMBINATION 260 11.4.1 Ray Diagrams for Two Lenses 260 11.4.2 Transverse Magnification 261 11.5 THE EYE 263 11.5.1 Accommodation 264 11.5.2 Application: Correcting Myopia 264 11.5.3 Application: Correcting Hyperopia 265 11.6 COMPOUND MICROSCOPES AND ABERRATIONS OF LENSES AND MIRRORS 268 11.6.1 Compound Microscope 268 11.6.2 The Transmission Electron Microscope 269 11.6.3 Aberrations of Lenses and Mirrors 270 Chapter 12 Wave Properties of Light 275 12.1 HUYGENS'S PRINCIPLE 275 12.1.1 Sources of Light 275 12.1.2 Wavefronts and Rays 275 12.1.3 Huygens's Principle 276 12.2 CONSTRUCTIVE AND DESTRUCTIVE INTERFERENCE 277 12.2.1 Coherent and Incoherent Sources 277 12.2.2 Interference of Two Coherent Waves 278 12.2.3 Phase Difference due to Different Paths 279 12.3 THIN FILM 281 12.3.1 Phase Shifts due to Reflection 282 12.3.2 Problem-Solving Strategy for Thin Films 283 12.3.3 Thin Films of Air 284 12.4 YOUNG'S DOUBLE-SLIT EXPERIMENT 287 12.5 GRATINGS 290 12.6 DIFFRACTION AND RESOLUTION OF OPTICAL INSTRUMENTS 293 12.6.1 Diffraction by a Single Slit 293 12.6.2 Diffraction and Resolution of Optical Instruments 296 12.7 X-RAY DIFFRACTION 299 12.8 POLARIZATION 300 12.8.1 Linear Polarization 300 12.8.2 Circular Polarization 302 12.8.3 Polarizers 302 12.8.4 Polarization by Scattering 304 12.8.5 Polarization by Reflection 308 Chapter 13 THE BASIS OF QUANTUM MECHANICS 313 13.1 QUANTIZATION 313 13.2 BLACKBODY RADIATION 314 13.3 THE PHOTOELECTRIC EFFECT 315 13.3.1 Experimental Results 315 13.3.2 The Photon 316 13.3.3 The Electron-Volt 318 13.3.4 The Photon Theory Explains the Photoelectric Effect 318 13.3.5 Applications of the Photoelectric Effect 319 13.4 X-RAY PRODUCTION 319 13.5 COMPTON SCATTERING 321 13.6 THE WAVE-PARTICLE DUALITY AND MATTER WAVES 323 13.6.1 Double-Slit Interference Experiment 323 13.6.2 Matter Waves 324 13.6.3 Matter Waves and Probability 327 13.7 ELECTRON MICROSCOPES 327 13.8 THE UNCERTAINTY PRINCIPLE 329 13.8.1 Position-momentum uncertainty principle 329 13.8.2 Energy-Time Uncertainty Principle 331 Chapter 14 Nuclear Physics 335 14.1 NUCLEAR STRUCTURE AND BINDING ENERGY 335 14.1.1 Nuclear Structure 335 14.1.2 Sizes of Nuclei 336 14.1.3 Binding Energy 337 14.1.4 Binding Energy and Mass Defect 338 14.1.5 Nuclear Energy Levels 340 14.2 RADIOACTIVITY 341 14.2.1 Conservation Laws in Radioactive Decay 342 14.2.2 Alpha Decay 343 14.2.3 Beta Decay 344 14.2.4 Gamma Decay 346 14.2.5 Other Radioactive Decay Modes 347 14.3 RADIOACTIVE DECAY RATES AND HALF-LIVES 347 14.3.1 Radioactivity Decay Law 347 14.3.2 Application: Radiocarbon Dating 349 14.4 BIOLOGICAL EFFECTS OF RADIATION 351 14.4.1 Radiation Dose 351 14.4.2 Penetration of Radiation 354 14.4.3 Medical Applications of Radiation 354 Appendix A English-Chinese Index 359 Appendix B Table of Selected Nuclides 363 Answers to Problems 366
你還可能感興趣
我要評論
|