關(guān)于我們
書單推薦
新書推薦
|
雙輝光等離子表面冶金學(英文版) 讀者對象:冶金專業(yè)研究人員
雙層輝光等離子表面冶金技術(shù)是我國首創(chuàng),居*水平的原創(chuàng)性發(fā)明技術(shù),是當今世界上*的表面合金化技術(shù),有廣闊的工業(yè)應(yīng)用前景,開辟了"等離子表面冶金學"新領(lǐng)域。本書是世界上*本有關(guān)等離子表面冶金學的專著,其出版將有助于彰顯我國的創(chuàng)造力和科學技術(shù)水平。
更多科學出版社服務(wù),請掃碼獲取。
Contents
1 Introduction 1 1.1 Engineering Materials and Its Surface 1 1.2 Surface Engineering and Its Classification 2 1.2.1 Concept of Surface Engineering 2 1.2.2 Surface Hardening Technology 3 1.2.3 Surface Covering Technology 4 1.2.4 Surface Alloying/Metallurgy Technology 5 1.2.5 Classification Table 6 1.3 Existing Surface Alloying Technology 7 1.3.1 Conventional Surface Alloying Technology 7 1.3.2 Modern Surface Alloying Technology 8 1.3.3 Concept of Plasma Surface Metallurgy 8 1.4 Glow Discharge and Plasma Nitriding 9 1.4.1 History of Glow Discharge 9 1.4.2 Concept of Plasma 10 1.4.3 Advent of Plasma Nitriding in Germany 10 References 11 2 Plasma Nitriding 13 2.1 Glow Discharge and Its Characteristics 13 2.1.1 Characteristics of Glow Discharge 13 2.1.2 Stratified Phenomenon 14 2.1.3 Interactions Between Ions and Material Surface 15 2.2 Plasma Nitriding Process 17 2.2.1 Basic Principle 17 2.2.2 Advantages 18 2.2.3 Industrial Applications 18 2.3 Other Plasma Surface Alloying Technology 19 2.3.1 Plasma Carburizing 19 2.3.2 Plasma Nitro-Carburizing 19 2.3.3 Plasma Sulphurizing 19 2.4 Restriction of Plasma Nitriding 20 2.5 Development of Plasma Nitriding in China 20 References 21 3 Double Glow Discharge Phenomenon and Its Applications 23 3.1 What Is Double Glow Discharge Phenomenon? 23 3.2 Discovery of Double Glow Discharge 24 3.3 Double Glow Discharge Modes 25 3.3.1 Independent Discharge Mode 25 3.3.2 Dependent Discharge Mode 25 3.3.3 Pulse Discharge Mode 26 3.3.4 Other Discharge Mode 26 3.4 Double Glow Hollow Cathode Discharge (DG-HCD) 26 3.4.1 Hollow Cathode Discharge (HCD) 26 3.4.2 Concept of DG-HCD 28 3.4.3 Current Amplification Effect of DG-HCD 29 3.5 Advent of Double Glow Plasma Surface Alloying/Metallurgy(Xu-Tec Process) 30 3.5.1 First Experimental Device 30 3.5.2 First Microstructure of Tungsten Surface Alloy 31 3.5.3 Other Considerations 32 References 32 4 Double Glow Plasma Surface Alloying/Metallurgy Technology 33 4.1 Introduction 33 4.2 Basic Principle 34 4.3 Diffusion Mechanism 36 4.4 Process Operation 37 4.5 Configuration of Working-Piece and Source Electrode 38 4.5.1 Plate Type 38 4.5.2 Cave Type 39 4.5.3 Deep Well Type 40 4.6 Technological Parameters 40 4.6.1 Measurable Parameters 40 4.6.2 Typical Process Parameters 47 4.6.3 Nonmeasurable Parameters 48 4.7 Arc Discharge 49 4.7.1 Micro-Arc Discharge 50 4.7.2 Macro Arc Discharge 50 4.7.3 Harmfulness of Arc Discharge 51 4.7.4 Reasons of Arc Discharge 51 4.8 Cathode Power Transmission Device and Gap Protection 53 4.8.1 Requirements of Cathode Transmission Device 54 4.8.2 Principle of Gap Protection 54 4.8.3 Example of Cathode Transmission Device 56 4.9 Advantages of Xu-Tec Process 56 4.10 Requirements for Operators 58 4.11 Xu-Tec Process in USA 58 4.12 Xu-Tec Process in China 59 4.13 Summary and Outlook 60 References 61 5 Physical Basis of Plasma Surface Metallurgy 63 5.1 Glow Discharge and its Discharge Characteristics 63 5.1.1 Gas Discharge 64 5.1.2 Glow Discharge Process 64 5.1.3 Stratification Phenomenon 66 5.1.4 Glow Discharge Characteristics 68 5.2 Low-Temperature Plasma 69 5.2.1 Plasma and Its Generation 69 5.2.2 Characteristics of Double Glow Discharge Plasma 71 5.3 Ion Bombardment and Sputtering 73 5.3.1 General Description of Sputtering Process 73 5.3.2 Preferential Sputtering 75 5.3.3 Alloy Sputtering 75 5.4 Propagation of Glow Discharges 76 5.4.1 Ionization Degree and Mean Free Path 77 5.4.2 Propagation of Plasma in Double Glow Discharges 78 5.5 Diffusion Process Under Ion Bombardment 79 5.5.1 Diffusion Model 80 5.5.2 Diffusion Mechanism 82 5.6 Prospect 85 References 87 6 Plasma Surface Metallurgy of Iron and Steel 89 6.1 Introduction 89 6.1.1 Plasma Surface Alloying and Alloying Element 89 6.1.2 Interaction of Alloying Element with Fe and C 90 6.2 Single-Element Plasma Surface Metallurgy 91 6.2.1 Plasma Surface W Alloying 91 6.2.2 Plasma Surface Ti Alloying 92 6.2.3 Plasma Surface Cr Alloying 93 6.2.4 Plasma Surface Al Alloying 95 6.2.5 Plasma Surface Mo Alloying 95 6.2.6 Plasma Surface Ta Alloying 97 6.3 Multiple-Element Plasma Surface Metallurgy 97 6.3.1 Plasma Surface W-Mo Alloying 98 6.3.2 Plasma Surface Ni-Cr Alloying 99 6.3.3 Plasma Surface Cr-Mo Alloying 99 6.4 Plasma Surface Metallurgy Superalloys 100 6.4.1 Superalloy 100 6.4.2 Plasma Surface Ni-Cr-Mo-Nb Superalloys 101 6.4.3 Plasma Surface Ni-Cr-Mo-Cu Superalloys 102 6.5 Plasma Surface Metallurgy Precipitation Hardening Stainless Steels 103 6.5.1 Plasma Surface Alloying Process 103 6.5.2 Age Hardening Process 104 6.5.3 Corrosion and Wear Tests 104 6.6 Plasma Surface Metallurgy Antibacterial Stainless Steels 105 6.6.1 Cu-Antibacterial Stainless Steel 105 6.6.2 Ag-Antibacterial Stainless Steel 106 6.6.3 Ag-Cu Antibacterial Stainless Steel 106 6.7 Plasma Composite Treatment 106 6.7.1 Plasma Titanium and Titanium-Nitrogen Alloying 107 6.7.2 Brush Plating and Plasma Surface Alloying 107 6.8 Summary 107 References 108 7 Plasma Surface Metallurgy High-Speed Steel 109 7.1 High-Speed Steels (HSS) 109 7.1.1 Conventional Metallurgy HSS 109 7.1.2 Powder Metallurgy HSS 110 7.1.3 Plasma Surface Metallurgy HSS 110 7.2 Plasma Surface Metallurgy W-Mo HSS 111 7.2.1 Plasma Surface W-Mo Alloying 111 7.2.2 Carburizing, Quenching and Tempering 112 7.3 Plasma Surface Metallurgy Aging Hardening HSS 113 7.3.1 Aging Hardening HSS and Its Excellent Cutting Performance 113 7.3.2 Plasma Surface W-Mo-Co Alloying 113 7.3.3 Decarburization and Its Effect on Microstructure 115 7.3.4 Solid Solution and Aging Treatment 118 7.4 Plasma Surface Metallurgy W-Mo-C HSS 120 7.5 Plasma Surface Metallurgy W-Mo-Ti HSS 122 7.5.1 Plasma W-Mo-Ti Alloying 122 7.5.2 Carburizing 123 7.5.3 Quenching and Tempering 124 7.6 Plasma Surface Metallurgy Mo-Cr Low Alloy HSS 124 7.7 Conclusion and Prospects 126 References 126 8 Plasma Surface Metallurgy of Titanium and Titanium Alloys 129 8.1 Introduction to Titanium and Titanium Alloys 129 8.1.1 Classification and Properties 129 8.1.2 Effect of Alloying Elements 130 8.1.3 Optimal Alloying Parameters 131 8.2 Plasma Surface Metallurgy Wear-Resistant Alloys 132 8.2.1 Double Glow Plasma Molybdenizing 132 8.2.2 Double Glow Plasma Molybdennitriding 135 8.3 Plasma Surface Metallurgy Flame-Resistant Alloys 137 8.3.1 Method for Protecting Titanium Alloy from “Titanium Fire” 137 8.3.2 Plasma Surface Metallurgy Ti-Cu Flame-Resistant Alloy 139 8.3.3 Plasma Surface Metallurgy Ti-Cr Flame-Resistant Alloy 141 8.3.4 Plasma Surface Metallurgy Ti-Mo Flame-Resistant Alloy 143 8.3.5 Plasma Surface Metallurgy Ti-Nb Flame-Resistant Alloy 148 8.4 Plasma Surface Metallurgy Ti-Pd Corrosion-Resistant Alloy 149 8.4.1 Overview of Corrosion-Resistant Titanium Alloys 149 8.4.2 Plasma Surface Metallurgy Ti-Pd Alloy 150 8.4.3 Corrosion Resistance of Plasma Surface Ti-Pd Alloy 151 8.5 Plasma Surface Metallurgy Ti-Nb Corrosion-Resistant Alloy 152 8.6 Plasma Surface Carburizing Without Hydrogen 153 8.6.1 Plasma Carburizing with no Hydrogen 153 8.6.2 Microstructure and Composition of Carburized Layer 154 8.6.3 Tribological Properties 157 8.7 Applications 158 8.8 Prospect 159 References 160 9 Plasma Surface Metallurgy of Intermetallic Compounds 163 9.1 Background 163 9.1.1 Intermetallic Compound and Its Classification 163 9.1.2 Conventional Surface Treatment 165 9.2 Plasma Surface Metallurgy of TiAl 165 9.2.1 Plasma Surface Metallurgy Nb-Alloy 165 9.2.2 Plasma Surface Metallurgy Mo-Alloy 169 9.2.3 Plasma Surface Metallurgy Cr-Alloy 172 9.2.4 Plasma Surface Metallurgy Ni-Cr-Mo-Nb Alloy 174 9.3 Plasma Surface Metallurgy of Ti2AlNb 174 9.3.1 Plasma Surface Metallurgy Cr-Alloy 174 9.3.2 Plasma Surface Metallurgy Mo-Alloy 175 9.4 Prospect 177 References 177 10 Plasma Surface Metallurgy of Other Materials 179 10.1 Plasma Surface Metallurgy of Copper and Copper Alloys 179 10.1.1 Plasma Surface Metallurgy Ti Alloy 180 10.1.2 Plasma Surface Metallurgy Ni Alloy 182 10.2 Plasma Surface Metallurgy of Niobium Alloy 182 10.2.1 Plasma Surface Metallurgy Ir Alloy 183 10.2.2 Plasma Surface Metallurgy Mo Alloy 183 10.2.3 Plasma Surface Metallurgy Fe-Cr-Mo-Si Alloy 184 10.3 Plasma Surface Metallurgy of Molybdenum 185 10.4 Plasma Surface Metallurgy of Tungsten 186 10.5 Plasma Surface Metallurgy of C/C Composite 187 10.6 Plasma Surface Metallurgy Ta Alloy 188 10.7 Plasma Surface Metallurgy Fe-Al-Cr Alloy 191 10.8 Prospect 193 References 194 11 Gradient Ceramization of Metal Surface and Metallization of Ceramic Surface 197 11.1 Ceramization of Carbon Steels 197 11.1.1 Plasma Surface Metallurgy TiN Ceramic 198 11.1.2 Plasma Surface Metallurgy WC Ceramic 203 11.1.3 Plasma Surface Metallurgy TiC Ceramic 208 11.1.4 Plasma Surface Metallurgy Ti(CN) Ceramics 210 11.2 Metallization of Ceramics 211 11.2.1 Metallization of TiSi30 Ceramic 211 11.2.2 Metallization of Si3N4 Ceramic 212 11.2.3 Plasma Surface Metallurgy Ta-C on Diamond and Cemented Carbide 214 11.2.4 Surface Metallization of Diamond Films 217 11.3 Plasma Surface Metallurgy Gradient-Function Luminescent Ceramics Er-ZrO2 on Ti6Al4V 218 11.3.1 Zirconia Functional Ceramics 218 11.3.2 Material Preparation and Processing Parameters 219 11.3.3 Microstructure Analysis 219 11.3.4 Friction and Wear Properties 221 11.3.5 Special Gradient Luminescent Properties 222 11.4 Prospect 223 References 224 12 Industrial Applications and Equipment Scaling-Ups of Xu-Tec Process 227 12.1 Xu-Tec High-Speed Steel (HSS) Handsaw Blade 227 12.1.1 Xu-Tec HSS Process 227 12.1.2 Working-piece-Source Structure for Xu-Tec Handsaw Blade 228 12.1.3 Production Processes 229 12.1.4 Microstructure and Composition 231 12.1.5 Cutting Performance 234 12.1.6 Industrialization 234 12.2 Xu-Tec HSS Treatment of Colloid Mill 235 12.2.1 Introduction 235 12.2.2 Process of Xu-Tec HSS Colloid Mill 236 12.2.3 Workpiece-Source Configuration Setup for Colloid Mill 236 12.2.4 Surface Alloying, Carburizing, Quenching, and Tempering 237 12.2.5 Assessment and Economic Benefits 241 12.3 Plasma Surface Metallurgy Ni-Cr Corrosion Resistant Alloy Plate 241 12.3.1 Plasma Surface Ni-Cr Alloying 242 12.3.2 Workpiece-Source Setup for Steel Plate Alloying 242 12.3.3 Corrosion Resistance Test 243 12.3.4 The Most Important Industry Application 245 12.4 Plasma Surface Metallurgy Chemical Valves and Flanges 245 12.5 Xu-Tec Equipment 246 12.5.1 Diagram of Xu-Tec Industrial Furnace 246 12.5.2 Existing Furnaces and Its Applications 247 12.5.3 Composition and Function of Each Part 248 12.5.4 Technical Specifications 252 12.5.5 Differences Between Xu-Tec Furnace and Plasma Nitriding Equipment 253 12.6 Prospect and Outlook 253 References 254 13 Other Technologies by Double Glow Discharge Plasma Phenomenon 257 13.1 Arc Plasma Added Double Glow Surface Alloying Technology 257 13.2 Double Glow Plasma Brazing Technology 258 13.3 Double Glow Plasma Sintering Technology 259 13.4 Double Glow Plasma Nano-Powder Technology 260 13.5 Double Glow Plasma Thin Diamond Film Technology 261 13.6 Double Glow Plasma Sputter Cleaning Technology 262 13.7 Double Glow Plasma Chemistry 264 13.8 Prospect 265 References 265 Closing Remarks 267
你還可能感興趣
我要評論
|