《測(cè)度論(第1卷)(影印版)》是作者在莫斯科國立大學(xué)數(shù)學(xué)力學(xué)系的講稿基礎(chǔ)上編寫而成的。第一卷包括了通常測(cè)度論教材中的內(nèi)容:測(cè)度的構(gòu)造與延拓,Lebesgue積分的定義及基本性質(zhì),Jordan分解,Radon-Nikodym定理,F(xiàn)ourier變換,卷積,L空間,測(cè)度空間,Newton-Leibniz公式,極大函數(shù),Henstock-Kurzweil積分等每章最后都附有非常豐富的補(bǔ)充與習(xí)題,其中包含許多有用的知識(shí),例如:Whitney分解,Lebesgue-Stieltjes積分,Hausdorff度,Brunn-Minkowski不等式,Hellinger積分與Hellinger距離,BMO類,Calderon-Zygmund分解等。書的最后有詳盡的參考文獻(xiàn)及歷史注記。這是一本很好的研究生教材和教學(xué)參考書。
為了更好地借鑒國外數(shù)學(xué)教育與研究的成功經(jīng)驗(yàn),促進(jìn)我國數(shù)學(xué)教育與研究事業(yè)的發(fā)展,提高高等學(xué)校數(shù)學(xué)教育教學(xué)質(zhì)量,本著“為我國熱愛數(shù)學(xué)的青年創(chuàng)造一個(gè)較好的學(xué)習(xí)數(shù)學(xué)的環(huán)境”這一宗旨,天元基金贊助出版“天元基金影印數(shù)學(xué)叢書”。
該叢書主要包含國外反映近代數(shù)學(xué)發(fā)展的純數(shù)學(xué)與應(yīng)用數(shù)學(xué)方面的優(yōu)秀書籍,天元基金邀請(qǐng)國內(nèi)各個(gè)方向的知名數(shù)學(xué)家參與選題的工作,經(jīng)專家遴選、推薦,由高等教育出版社影印出版。為了提高我國數(shù)學(xué)研究生教學(xué)的水平,暫把選書的目標(biāo)確定在研究生教材上。當(dāng)然,有的書也可作為高年級(jí)本科生教材或參考書,有的書則介于研究生教材與專著之間。
歡迎各方專家、讀者對(duì)本叢書的選題、印刷、銷售等工作提出批評(píng)和建議。
Preface
Chapter 1.Constructions and extensions of measures
1.1.Measurement of length: introductory remarks
1.2.Algebras and c-algebras
1.3.Additivity and countable additivity of measures
1.4.Compact classes and countable additivity
1.5.Outer measure and the Lebesgue extension of measures
1.6.Infinite and a-finite measures
1.7. Lebesgue measure
1.8.Lebesgue-Stieltjes measures
1.9.Monotone and a-additive classes of sets
1.10.Souslin sets and the A-operation
1.11.Carath~odory outer measures
1.12. Supplements and exercises
Set operations (48).
Compact classes (50).
Metric Boolean algebra (53).
Measurable envelope, measurable kernel and inner measure (56).
Extensions of measures (58).
Some interesting sets (61).
Additive, but not countably additive measures (67).
Abstract inner measures (70).
Measures on lattices of sets (75).
Set-theoretic problems in measure theory (77).
Invariant extensions of Lebesgue measure (80).
Whitneys decomposition (82).
Exercises (83).
Chapter 2.The Lebesgue integral
2.1.Measurable functions
2.2.Convergence in measure and almost everywhere
2.3. The integral for simple functions
2.4.The general definition of the Lebesgue integral
2.5.Basic properties of the integral
2.6.Integration with respect to infinite measures
2.7.The completeness of the space L1
2.8.Convergence theorems
2.9.Criteria of integrability
2.10.Connections with the Riemann integral
2.11.The HSlder and Minkowski inequalities
2.12.Supplements and exercises
The a-Mgebra generated by a class of functions (143).
The functional monotone class theorem (146).
Balre classes of functions (148).
Mean value theorems (150).
The LebesgueStieltjes integral (152).
Integral inequalities (153).
Exercises (156).
Chapter 3. Operations on measures and functions
3.1.Decomposition of signed measures
3.2.The Radon-Nikodym theorem
3.3.Products of measure spaces
3.4.F~abinis theorem
3.5.Infinite products of measures
3.6. Images of measures under mappings
3.7.Change of variables in
3.8.The Fourier transform
3.9.Convolution
3.10. Supplements and exercises
On Fubinis theorem and products of a-algebras (209).
Steiners symmetrization (212).
Hausdorff measures (215).
Decompositions of
set functions (218).
Properties of positive definite functions (220).
The Brunn-Minkowski inequality and its generalizations (222).
Mixed volumes (226).
The Radon transform (227).
Exercises (228).
Chapter 4.The spaces Lp and spaces of measures
4.1.The spaces Lp
4.2.Approximations in Lp
4.3.The Hilbert space L2
4.4.Duality of the spaces Lp
4.5.Uniform integrability
4.6.Convergence of measures
4.7.Supplements and exercises
The spaces Lp and the space of measures as structures (277).
The weak
topology in LP(280).
Uniform convexity of LP(283).
Uniform integrability
and weak compactness in L1 (285).
The topology of setwise convergence of measures (291).
Norm compactness and approximations in Lp (294).
Certain conditions of convergence in LP (298).
Hellingers integral and
Hellingers distance (299).
Additive set functions (302).
Exercises (303).
Chapter 5. Connections between the integral and derivative.
5.1.Differentiability of functions on the real line
5.2.Functions of bounded variation
5.3.Absolutely continuous functions
5.4.The Newton-Leibniz formula
5.5.Covering theorems
5.6.The maximal function
5.7.The Henstock-Kurzweil integral
5.8.Supplements and exercises
Covering theorems (361).
Density points and Lebesgue points (366).
Differentiation of measures on ]Rn (367).
The approximate
continuity (369).
Derivates and the approximate differentiability (370).
The class BMO (373).
Weighted inequalities (374). Measures with
the doubling property (375).
Sobolev derivatives (376).
The area and coarea formulas and change of variables (379).
Surface measures (383).
The CalderSn-Zygmund decomposition (385).
Exercises (386).
Bibliographical and Historical Comments
References
Author Index
Subject Index