李彥博編*的《Frobenius胞腔代數(shù)(英文版)》系統(tǒng)研究Frobenius胞腔代數(shù)表示與結(jié)構(gòu)理論,主要包括對偶基的胞腔性、Schur元素與投射模、 Nakayama自同構(gòu)及扭中心、Higman理想與中心、 Jucys-Murphy元素以及Jacboson根等相關(guān)理論。本書給供相關(guān)學(xué)者參考閱讀。
1 Frobenius algebras
1.1 Definition of Frobenius algebras
1.2 Examples of Frobenius algebras
1.3 Nakayama automorphisms and Higman ideals
1.4 Schur elements of symmetric algebras
1.5 Canonical mesh algebras
2 Cellular algebras
2.1 Definition of cellular algebras
2.2 Representation theory of cellular algebras
2.3 Quasi-heredity of cellular algebras
2.4 A new class of diagram algebras
2.5 Standard based algebras
2.6 Affine cellular algebras and procellular algebras
3 Frobenius cellular algebras
3.1 Dual bases
3.2 Examples of non-symmetric Frobenius cellular algebras .
3.3 Symmetric cellular algebras
4 Centers and radicals of symmetric cellular algebras
4.1 Centers of symmetric cellular algebras
4.2 Nakayama twisted centers of Frobenius cellular algebras
4.3 Jucys-Murphy elements and centers
4.4 Centers of Ariki-Koike algebras
4.5 Radicals of symmetric cellular algebras
5 Hecke algebras of type A
5.1 Murphy basis
5.2 Dual Murphy basis
5.3 Examples
5.4 Kazhdan-Lusztig basis
Bibliography
Index