微磁學(xué)中的弛豫過程-(影印版) (美)祖爾(H. Suhl) 9787301251874
定 價(jià):36 元
叢書名:中外物理學(xué)精品書系
- 作者:(美)祖爾(H. Suhl)
- 出版時(shí)間:2015/1/1
- ISBN:9787301251874
- 出 版 社:北京大學(xué)出版社
- 中圖法分類:O482.53
- 頁碼:190
- 紙張:純質(zhì)紙
- 版次:1
- 開本:16開
《微磁學(xué)中的弛豫過程(英文影印版)》講述了微磁學(xué)的相關(guān)概念。特別地,本書對(duì)弛豫過程中的一些現(xiàn)象進(jìn)行了深入探討。并且,本書對(duì)弛豫的理論分析也給與了詳細(xì)介紹。本書適合凝聚態(tài)物理、固體物理和材料物理領(lǐng)域的研究者參考。
弛豫過程是普遍存在與物理現(xiàn)象中的。在微磁學(xué)中,弛豫過程更是必須考慮的對(duì)象。國內(nèi)系統(tǒng)講述這方面理論的圖書非常罕見,《微磁學(xué)中的弛豫過程(英文影印版)》的引進(jìn)對(duì)國內(nèi)的相關(guān)研究人員會(huì)很有幫助。
(美)祖爾,美國加州大學(xué)教授。
Preface vii
Notations and conventions xvii
1 The Classical Magnetization Field
1.1 Introduction
1.2 Equations of motion
1.2.1 Damping
1.3 Approaching the Curie temperature
2 Small motions of the Magnetization
2.1 Introduction
2.2 Models of small motions
2.2.1 Distributive damping
2.2.2 Instabilities and spin wave condensates
3 Intrinsic Damping
3.1 Introduction
3.2 Magnetostrictive coupling Preface vii
Notations and conventions xvii
1 The Classical Magnetization Field
1.1 Introduction
1.2 Equations of motion
1.2.1 Damping
1.3 Approaching the Curie temperature
2 Small motions of the Magnetization
2.1 Introduction
2.2 Models of small motions
2.2.1 Distributive damping
2.2.2 Instabilities and spin wave condensates
3 Intrinsic Damping
3.1 Introduction
3.2 Magnetostrictive coupling
3.2.1 Small samples
3.2.2 Large, homogeneous samples
3.3 Loss torque in magnetic metals
3.3.1 Eddy current damping
3.3.2 Direct coupling of conduction electrons to the
magnetization field
3.4 Fluctuations in medium properties
3.5 Relaxation due to weakly coupled magnetic impurities
3.5.1 Slow relaxation
3.5.2 Corrections to the adiabatic limit
3.6 Appendix 3A. Inclusion of displacement current in
Section 3.3.1
4 Fluctuations
4.1 Introduction
4.2 Fluctuation-dissipation theorem
4.3 Langevin equation, and generalized Langevin equation
4.4 Fokker-Planck equation-cartesians
4.4.1 Fokker-Planck equation in polar angles
4.4.2 Fokker-Planck equation in the absence of well-defined
canonical variables
5 Magnetization Reversal in a Very Dilute Array of Small
Particles
5.1 Introduction
5.2 General observations
5.3 Reversal in 2d
5.3.1 Reversal in the long time limit
5.3.2 Intermediate time scales
5.3.3 Applied field and anisotropy axis misaligned
5.3.4 Relation to first-passage type theories
5.4 Rotation in 3d
6 Magnetization Reversal in Arrays of Particles and
Continuous Media
6.1 Introduction
6.2 Relaxation due to magnetic moment interaction in
a sparse medium
6.2.1 Equations of motion for dipolar interaction
6.2.2 A single pair
6.3 More dense arrays of many interacting particles
6.3.1 The Arnold web
6.3.2 Relevance to magnetic relaxation and reversal
6.3.3 Effective single-variable relaxation from causes other than
chaos
6.4 Magnetization reversal and the magnetization process in
large, dense systems
6.4.1 Simple model of magnetization reversal by domain wall
motion
6.4.2 Motion of a Bloch domain wall
6.4.3 Magnetostatics and the magnetization process.
Pre-existing domain walls
6.5 Appendix 6A: Vortex solutions in cylinder and disc: stability
considerations
References
Subject Index