學(xué)者書屋系列:復(fù)變函數(shù)引論
定 價:40 元
叢書名:學(xué)者書屋系列
- 作者:曹麗霞,羅英語,仲光蘋編
- 出版時間:2013/7/1
- ISBN:9787566106469
- 出 版 社:哈爾濱工程大學(xué)出版社
- 中圖法分類:O174.5
- 頁碼:299
- 紙張:膠版紙
- 版次:1
- 開本:16開
《學(xué)者書屋系列:復(fù)變函數(shù)引論》是大學(xué)數(shù)學(xué)、信息與計(jì)算科學(xué)等相關(guān)專業(yè)復(fù)變函數(shù)雙語(英語)教學(xué)用書,正文部分均以英語陳述。
全書以解析函數(shù)為主線安排了復(fù)數(shù)及復(fù)數(shù)域與擴(kuò)充復(fù)平面、復(fù)變函數(shù)與解析函數(shù)、初等解析函數(shù)、復(fù)變函數(shù)沿有向曲線的積分、級數(shù)、奇點(diǎn)與留數(shù)、留數(shù)應(yīng)用共八章內(nèi)容,從微分、積分、級數(shù)、在一點(diǎn)處、在一個收斂點(diǎn)列、在一個區(qū)域中等九個層次來逐步深入地展開對解析函數(shù)的討論,并利用解析函數(shù)的留數(shù)定理來計(jì)算一元實(shí)變函數(shù)的積分!秾W(xué)者書屋系列:復(fù)變函數(shù)引論》對多值函數(shù)、解析函數(shù)等內(nèi)容作了較好的處理,使傳統(tǒng)內(nèi)容以全新的面貌出現(xiàn)。為方便讀者使用,各節(jié)配有適量的習(xí)題及必要的提示或解答。
《復(fù)變函數(shù)引論》可作為數(shù)學(xué)專業(yè)本科生的雙語教材或教學(xué)參考書,也可供大、中專數(shù)學(xué)教師、科技工作者、工程技術(shù)人員及自學(xué)者參考。全書由曹麗霞負(fù)責(zé)組織各章節(jié)內(nèi)容的討論和定稿。
《學(xué)者書屋系列:復(fù)變函數(shù)引論》以解析函數(shù)為主線安排了復(fù)數(shù)及復(fù)數(shù)域與擴(kuò)充復(fù)平面、復(fù)變函數(shù)與解析函數(shù)、初等解析函數(shù)、復(fù)變函數(shù)沿有向曲線的積分、級數(shù)、奇點(diǎn)與留數(shù)、留數(shù)應(yīng)用共八章內(nèi)容,從微分、積分、級數(shù)、在一點(diǎn)處、在一個收斂點(diǎn)列、在一個區(qū)域中等九個層次來逐步深入地展開對解析函數(shù)的討論,并利用解析函數(shù)的留數(shù)定理來計(jì)算一元實(shí)變函數(shù)的積分!秾W(xué)者書屋系列:復(fù)變函數(shù)引論》對多值函數(shù)、解析函數(shù)等內(nèi)容作了較好的處理,使傳統(tǒng)內(nèi)容以全新的面貌出現(xiàn)。為方便讀者使用,各節(jié)配有適量的習(xí)題及必要的提示或解答。全書由曹麗霞負(fù)責(zé)組織各章節(jié)內(nèi)容的討論和定稿。
Chapter 1 Complex Numbers
1.1 Complex Numbers
Exercises for 1.1
Answers or Hints for Exercises 1.1
1.2 Moduli and Conjugates
Exercises for 1.2
Answers or Hints for Exercises 1.2
1.3 Exponential Form
Exercises for 1.3
Answers or Hints for Exercises 1.3
1.4 Powers and Roots
Exercises for 1.4
Answers or Hints for Exercises 1.4
1.5 Geometrically Application of Complex Numbers
Exercises for 1.5
1.6 Plane Topology
Exercises for 1.6
Answers or Hints for Exercises 1.6
1.7 Curves
Chapter 2 Analytic Functions
2.1 Complex-valued Functions of a Complex Variable
Exercises for 2.1
Answers or Hints for Exercises 2.1
2.2 Limits and Continuity
Exercises for 2.2
Answers or Hints for Exercises 2.2
2.3 The Extended Plane and Infinity
Exercises for 2.3
Answers or Hints for Exercises 2.3
2.4 Complex Differentiability
Exercises for 2.4
Answers or Hints for Exercises 2.4
2.5 Analytic Functions
Exercises for 2.5
Answers or Hints for Exercises 2.5
2.6 Laplace's Equation and Harmonic Conjugates
Exercises for 2.6
Answers or Hints for Exercises 2.6
Chapter 3 Elementary Functions
3.1 The Exponential Functions
Exercises for 3.1
Answers or Hints for Exercises 3.1
3.2 Linear Fractional Transformations
Exercises for 3.2
Answers or Hints for Exercises 3.2
3.3 Trigonometric Functions
Exercises for 3.3
Answers or Hints for Exercises 3.3
3.4 The Radical Functions
Exercises for 3.4
Answers or Hints for Exercises 3.4
3.5 The Logarithm Function
Exercises for 3.5
Answers or Hints for Exercises 3.5
3.6 Complex Exponents
Exercises for 3.6
Answers or Hints for Exercises 3.6
3.7 Inverse Trigonometric and Hyperbolic Functions
Exercises for 3.7
Answers or Hints for Exercises 3.7
Chapter 4 Complex Integrals
4.1 Contour Integrals and Its Simple Properties
Exercise for 4.1
Answers or Hints for Exercises 4.1
4.2 Antiderivatives
Exercises for 4.2
Answers or Hints for Exercises 4.2
4.3 Cauchy Theorem
Exercises for 4.3
Answers or Hints for Exercises 4.3
4.4 Cauchy Integral Formula
Exercises for 4.4
Answers or Hints for Exercises 4.4
4.5 Maximum Modulus Principle
Exercises for 4.5
Answers or Hints for Exercises 4.5
Chapter 5 Power Series
5.1 Complex Sequences, Series and Their Basic Properties
Exercises for 5.1
Answers or Hints for Exercises 5.1
5.2 Series of Complex Functions and Its Basic Properties
Exercises for 5.2
Answers or Hints for Exercises 5.2
5.3 Power Series
Exercises for 5“. 3
Answers or Hints for Exercises 5.3
5.4 Taylor Series for Analytic Functions
Exercises for 5.4 ~
Answers or Hints for Exercises 5.4
5.5 Manipulation of Power Series
Exercises for 5.5
Answers or Hints for Exercises 5.5
5.6 The Zeros of Analytic Functions
Exercises for 5.6
Answers or Hints for Exercises 5.6
Chapter 6 Laurent Series and Isolated Singularities
6.1 Lanrent Decomposition
Exercises for 6.1
Answers or Hints for Exercises 6.1
6.2 Isolated Singular Point and Its Types
Exercises for 6.2
Answers or Hints for Exercises 6.2
6.3 Isolated Singularity at Infinity
Exercises for 6.3
Answers or Hints for Exercises 6.3
6.4 Entire Functions and Meromorphic Functions
Exercises for 6.4
Answers or Hints for Exercises 6.4
Chapter 7 Residue
7.1 Residue and Cauchy Residue Theorem
Exercises for 7.1
Answers or Hints for Exercises 7.1
7.2 The Argument Principle, Rouche's Theorem
Exercises for 7.2
Answers or Hints for Exercises 7.2
Chapter 8 Evaluation of Real Integrals
8.1 Integrals of Trigonometric Functions
Exercises for 8.1
Answers or Hints for Exercises 8.1
8.2 Rational Functions over the Real Line
Exercises for 8.2
Answers or Hints for Exercises 8.2
8.3 Rational and Trigonometric Functions over the Real Line
Exercises for 8.3
Answers or Hints for Exercises 8.3
8.4 Principal Value Integrals, Indentation Round a Singularity
Exercises for 8.4
Answers or Hints for Exercises 8.4
8.5 Integrals with Branch Points
Exercises for 8.5
Answers or Hints for Exercises 8.5
參考文獻(xiàn)