基于流體力學(xué)的金屬增材制造過程仿真研究(英文版第二版)
定 價:100 元
- 作者:李輝
- 出版時間:2022/9/1
- ISBN:9787121434211
- 出 版 社:電子工業(yè)出版社
- 中圖法分類:TB4-39
- 頁碼:228
- 紙張:
- 版次:01
- 開本:16開
本書針對金屬增材制造加工過程進(jìn)行了系統(tǒng)研究,基于計算流體動力學(xué)方法研究金屬增材制造工藝過程中的流體問題。第一章為緒論。第二章至第四章研究金屬增材制造打印機(jī)腔體內(nèi)部流場及顆粒分布特性,并設(shè)計了新穎的流體罩和負(fù)壓管對打印機(jī)腔體內(nèi)部流場優(yōu)化以及濺射顆粒清除。第五章至第九章主要研究金屬增材制造加工過程中熔池特性,其中第五章研究了金屬熔池動力學(xué)特性,第六章研究了外加磁場對金屬增材制造過程中熔池以及凝固過程的影響,第七章和第八章研究了金屬增材制造過程中工件內(nèi)部單氣孔缺陷和多氣孔缺陷的演化過程。第九章研究金屬增材制造工件激光清洗工藝,以控制工件表面粗糙度。 本次主要修訂了技術(shù)內(nèi)容的專業(yè)描述,更新了部分結(jié)果。
李輝,中共黨員,教授、博導(dǎo),湖北省特聘專家,中組部"青年千人計劃”入選者,國家重點研發(fā)計劃項目首席科學(xué)家,IEEE高級會員。作者于1995年至2002年就讀于華中科技大學(xué)機(jī)械科學(xué)與工程學(xué)院,獲得工學(xué)學(xué)士與碩士學(xué)位。作者于2002年獲得新加坡科研局博士獎學(xué)金,在新加坡國立大學(xué)(NUS)電子與計算機(jī)系和新加坡數(shù)據(jù)存儲研究所(DSI)進(jìn)行博士學(xué)位的聯(lián)合培養(yǎng),師從于新加坡數(shù)據(jù)存儲研究所高級研究科學(xué)家(Senior research scientist)劉波博士(國家"千人計劃”特聘專家,教育部長江學(xué)者講座教授)和新加坡國立大學(xué)電子與計算機(jī)工程系教授Chong Tow Chong(現(xiàn)任新加坡理工大學(xué)(SUTD)校長),并于2007年獲得工學(xué)博士學(xué)位。作者于2008年進(jìn)入美國加州大學(xué)圣地亞哥分校(UCSD)從事博士后研究,師從于UCSD機(jī)械和科學(xué)工程學(xué)院前主席、磁記錄中心首席教授Frank E. Talke院士。作者于2005年至2013年就職于日立公司(Hitachi)亞洲研究與發(fā)展中心,其中于2006年在日立總部中央研究所交流半年,2008年起擔(dān)任研發(fā)中心項目領(lǐng)導(dǎo)及副經(jīng)理。在新加坡、日本和美國長達(dá)11年的學(xué)習(xí)和科研工作經(jīng)歷,主攻磁記錄硬盤可靠性研究,實現(xiàn)微機(jī)電系統(tǒng)的高精度定位控制設(shè)計和應(yīng)用。作者主持完成與美國美國加州大學(xué)圣地亞哥分校,新加坡數(shù)據(jù)存儲研究所和日立日本本部的聯(lián)合科研項目7項。作者2012年入選國際電器與電子工程師學(xué)會(IEEE)高級會員,2013年入選中組部"青年千人計劃”,獲聘為武漢大學(xué)教授、博士生導(dǎo)師,2014年被授予湖北省特聘專家稱號。作者主要從事先進(jìn)制造工藝過程、在線監(jiān)測及產(chǎn)品可靠性等研究,發(fā)表SCI期刊論文80余篇、國際會議論文60余篇,在美國、新加坡、韓國做特邀報告4次。主編英文專著2部、中文專著1部,獲國家科學(xué)技術(shù)學(xué)術(shù)著作出版基金資助1次。提交/授權(quán)國家發(fā)明專利41項、授權(quán)軟件著作權(quán)3項。作者承擔(dān)科研項目包括國家自然科學(xué)基金委重大科研儀器研制項目(教育部唯一推薦)、國家重點研發(fā)計劃"增材制造與激光制造”重點專項、國家重點研發(fā)計劃"網(wǎng)絡(luò)協(xié)同制造和智能工廠”重點專項(首席)、JKW基礎(chǔ)加強(qiáng)項目、湖北省技術(shù)創(chuàng)新專項(重大項目)、廣東省重點領(lǐng)域研發(fā)計劃、四川省重點研發(fā)計劃、廣東省科技創(chuàng)新戰(zhàn)略專項資金自由申請項目、深圳市基礎(chǔ)研究計劃項目、深圳市協(xié)同創(chuàng)新計劃國際合作研究項目、華為公司技術(shù)咨詢報告等。
Chapter 1 Introduction 1
1.1 Background 2
1.2 Motivation 3
1.3 Outline 4
Chapter 2 Investigation of the flow field in Laser-based Powder Bed Fusion
manufacturing 5
2.1 Introduction 7
2.2 Simulation model of the L-PBF printer 10
2.2.1 Problem description 10
2.2.2 Geometric model of the L-PBF printer 11
2.2.3 Numerical model of the L-PBF printer 12
2.3 Simulation results 16
2.3.1 Distribution of the flow field 16
2.3.2 Distribution of the temperature field 21
2.3.3 Distribution of spatter particles 23
2.4 Conclusions 28
References 30
Chapter 3 Investigation of optimizing the flow field with fluid cover in
Laser-based Powder Bed Fusion manufacturing process 33
3.1 Introduction 35
3.2 Simulation model of L-PBF printer 37
3.2.1 Geometry of L-PBF printer with a fluid stabilizing cover 37
3.2.2 Numerical model of printer with a fluid stabilizing cover 37
3.2.3 Mesh of L-PBF printer with a fluid stabilizing cover 39
3.2.4 Model of the fluid stabilizing cover and particles 40
3.3 Simulation results and discussion 43
3.3.1 Influence of the fluid stabilizing cover on the flow field 43
3.3.2 Influence of fluid stabilizing cover on particle distribution and removing rate 47
3.4 Summary and conclusions 51
References 53
Chapter 4 Numerical investigation of controlling spatters with negative pressure
pipe in Laser-based Powder Bed Fusion process 54
4.1 Introduction 56
4.2 Simulation model of L-PBF printer 59
4.2.1 Geometric model of L-PBF printer 59
4.2.2 Numerical model of L-PBF printer 61
4.3 Simulation results and discussions 64
4.3.1 Effect of pipe diameter 68
4.3.2 Effect of outlet flow rate 70
4.3.3 Effect of initial particle velocity 74
4.4 Summary and conclusions 76
References 78
Chapter 5 Evolution of molten pool during Laser-based Powder Bed Fusion of
Ti-6Al-4V 80
5.1 Introduction 82
5.2 Modeling approach and numerical simulation 85
5.2.1 Model establishing and assumptions 85
5.2.2 Governing equations 87
5.2.3 Heat source model 87
5.2.4 Phase change 88
5.2.5 Boundary conditions setup 89
5.2.6 Mesh generation 90
5.3 Experimental procedures 91
5.4 Results and discussions 92
5.4.1 Surface temperature distribution and morphology 92
5.4.2 Formation and solidification of the molten pool 94
5.4.3 Development of the evaporation region 98
5.5 Conclusions 101
References 103
Chapter 6 Simulation of surface deformation control during Laser-based
Powder Bed Fusion Al-Si-10Mg powder using an external magnetic field 107
6.1 Introduction 109
6.2 Modeling and simulation 112
6.2.1 Modeling of L-PBF 112
6.2.2 Mesh model and basic assumptions 113
6.2.3 Heat transfer conditions 114
6.2.4 Marangoni convection 115
6.2.5 Phase-change material 115
6.2.6 Lorentz force 116
6.3 Results 118
6.3.1 Velocity field in the molten pool 118
6.3.2 Lorentz force in the MP 121
6.3.3 Surface deformation of the sample 123
6.4 Conclusions 127
References 128
Chapter 7 Influence of laser post- processing on pore evolution of Ti-6Al-4V
alloy by Laser-based Powder Bed Fusion 131
7.1 Introduction 133
7.2 Experimental procedures 136
7.2.1 Sample fabrication 136
7.2.2 Determination of porosity by micro-CT 137
7.3 Modeling and simulation 140
7.3.1 Numerical model 140
7.3.2 Moving Gaussian heat source 143
7.3.3 Thermal boundary conditions 143
7.3.4 Marangoni effect, surface tension and recoil pressure 144
7.4 Numerical results and discussion 145
7.5 Conclusions 152
References 153
Chapter 8 Evolution of multi pores in Ti-6Al-4V/Al-Si-10Mg alloy during laser
post-processing 157
8.1 Introduction 159
8.2 Experimental procedures 162
8.2.1 Sample preparation 162
8.2.2 Detection of porosity by mirco-CT 162
8.3 Model and simulation 165
8.3.1 Simulation model 165
8.3.2 Gaussian heat source 167
8.3.3 Latent heat of phase change 168
8.3.4 Level-set method 169
8.3.5 Boundary conditions 169
8.4 Numerical results and discussion 171
8.5 Conclusions 177
References 179
Chapter 9 Investigation of laser polishing of four Laser-based Powder Bed
Fusion alloy samples 182
9.1 Introduction 184
9.2 Model and theoretical calculation 188
9.2.1 Physical model and assumptions 188
9.2.2 Governing equations and boundary conditions 190
9.2.3 Simulation results 192
9.3 Experimental methods 195
9.3.1 Sample fabrication 195
9.3.2 Morphology observation by 3D optical profiler 198
9.3.3 Experimental results 199
9.4 Conclusions 206
References 208