定 價(jià):88 元
叢書(shū)名:現(xiàn)代數(shù)學(xué)基礎(chǔ)叢書(shū);181
- 作者:胡峻,周凱
- 出版時(shí)間:2020/2/1
- ISBN:9787030636119
- 出 版 社:科學(xué)出版社
- 中圖法分類(lèi):O152.5
- 頁(yè)碼:153頁(yè)
- 紙張:膠版紙
- 版次:1
- 開(kāi)本:16K
半單李代數(shù)的BGG范疇*位于李理論與幾何表示理論的核心位置,它的許多重要的結(jié)構(gòu)與表示只依賴(lài)于它的Weyl群的組合.通過(guò)Beilinson-Bemstein局部化從其相伴的旗簇的幾何理論可以得到它的許多漂亮的結(jié)果,它也是當(dāng)前范疇化理論的一個(gè)重要的源泉.《半單李代數(shù)與BGG范疇0》致力于介紹復(fù)半單李代數(shù)及其BGG范疇*的基本理論.《半單李代數(shù)與BGG范疇0》分為兩個(gè)部分:第一部分回顧復(fù)半單李代數(shù)的結(jié)構(gòu)及表示理論的經(jīng)典內(nèi)容,包括*的表示、普遍包絡(luò)代數(shù)和PBW定理、半單李代數(shù)的根空間分解、抽象根系、最高權(quán)模、單模以及Wey1特征標(biāo)公式;第二部分介紹復(fù)半單李代數(shù)的BGG范疇*的基本理論,包括范疇0的定義、Verma模、投射模、標(biāo)準(zhǔn)濾過(guò)、Verma模之間的同態(tài)、Kazhdan-Lusztig理論、Shapovalov雙線(xiàn)性型、投射函子和平移函子、拋物范疇*、范疇*的*-分次形式與Koszul對(duì)偶.
更多科學(xué)出版社服務(wù),請(qǐng)掃碼獲取。
目錄
第一部分 李代數(shù)理論簡(jiǎn)介
第1章 李代數(shù)導(dǎo)引 3
1.1 基本定義與概念 3
1.2 可解李代數(shù)和冪零李代數(shù) 8
1.3 g-模及g-模同態(tài) 11
1.4 *的表示 14
1.5 Jordan分解、Killing型與Cartan準(zhǔn)則 17
1.6 單李代數(shù)的分類(lèi)和簡(jiǎn)約李代數(shù) 22
1.7 普遍包絡(luò)代數(shù)與PBW定理 26
1.8 半單李代數(shù)的根空間分解 30
第2章 根系與Weyl群 40
2.1 基本定義及例子 40
2.2 Weyl群和Weyl房 43
2.3 不可約根系 48
2.4 抽象權(quán)格 54
第3章 最高權(quán)模、單模與特征標(biāo)公式 58
3.1 最高權(quán)模、Verma模與單模 58
3.2 可積模、可積范疇與Serre關(guān)系 63
3.3 Weyl特征標(biāo)公式 71
第二部分 BGG范疇O
第4章 范疇O的定義與性質(zhì) 79
4.1 范疇O的定義 79
4.2 子范疇Ox 82
4.3 點(diǎn)支配權(quán)和點(diǎn)反支配權(quán) 86
第5章 范疇O的同調(diào)性質(zhì)、投射模、內(nèi)射模及標(biāo)準(zhǔn)濾過(guò) 90
5.1 Hom函子、Ext函子和反變對(duì)偶函子 90
5.2 標(biāo)準(zhǔn)濾過(guò) 94
5.3 投射模、內(nèi)射模與BGG互反律 97
第6章 Verma模的結(jié)構(gòu)與同態(tài) 105
6.1 Verma模之間的同態(tài) 105
6.2 單Verma模、投射Verma模及投射內(nèi)射模 110
6.3 Kazhdan-Lusztig理論 112
6.4 Shapovalov雙線(xiàn)性型 116
第7章 投射函子與平移函子 120
7.1 投射函子 120
7.2 平移函子 121
7.3 傾斜模 128
第8章 拋物范疇O 132
8.1 拋物范疇O的定義和基本性質(zhì) 132
8.2 拋物Verma模 136
8.3 范疇O的Z-分次形式與Koszul對(duì)偶 141
參考文獻(xiàn) 145
索引 151
《現(xiàn)代數(shù)學(xué)基礎(chǔ)叢書(shū)》已出版書(shū)目 154